
TrustBloc Documentation
Release 0.0.1

SecureKey

Aug 31, 2020

Contents

1 Introduction 3

2 Architecture 5

3 Message Routing and Storage 7

4 Privacy-Enhanced OAuth 2.0 13

5 Projects 17

6 Verifiable Credential Service (VCS) 19

7 Adapters 29

8 Direct Wallet/CHAPI Interactions 35

9 How to Contribute! 37

10 Have Questions? 39

Bibliography 41

i

ii

TrustBloc Documentation, Release 0.0.1

Contents 1

TrustBloc Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Introduction

This is a guide for installing and deploying TrustBloc projects. If you’d like to contribute, fork us on GitHub!.

1.1 What is TrustBloc?

An interoperability initiative aimed at establishing common standards and development frameworks for next genera-
tion digital identity networks.

1.2 Why use TrustBloc?

Several projects exist today with the goal of creating digital identities that would allow everyday users to have self-
governance over the storage, distribution and control of their identity. However many of these solutions are only
offered partially and may not integrate well with each other.

TrustBloc provides the end-to-end architecture that enables the deployment of a production-ready digital identity
platform.

3

https://github.com/trustbloc

TrustBloc Documentation, Release 0.0.1

4 Chapter 1. Introduction

CHAPTER 2

Architecture

Diagram represents an overview of the components related to the TrustBloc initiative.

The TrustBloc initiative provides a common infrastructure for consortium to enable document provenance and data
exchange, while still allowing these consortiums to differentiate based on their service offerings. We are building on
top of existing community efforts from Hyperledger Fabric along with the proposed Hyperledger Aries project.

5

TrustBloc Documentation, Release 0.0.1

The TrustBloc initiative aims to provide consortium-based document provenance and services to reduce trust obstacles.
We are enabling DIDs to be managed and exposed from Fabric, and more generically enabling document provenance.
The following features are early goals of the initiative:

• Provide out-of-the-box capabilities for document provenance (including DIDs).

• Enhance Hyperledger Fabric private collections to support SideTrees – allowing identifiers and documents to be
anchored to a channel without performing individual Fabric transaction for each identifier or document.

• Enable off-chain distributed storage model to support transactions (e.g., transient storage, content-addressable
storage).

• Support a storage and query model for data scoped to a particular organization.

Data Exchange Components

TrustBloc will also provide a verifiable credential exchange flow. We are enabling a model for digital identity exchange
based on DIDs, Verifiable Credentials, and Hubs. This will be achieved by:

• Leveraging emerging community specifications (e.g., DIDs and Verifiable Credentials).

• Enabling usage of Peer DIDs to establish data exchange transactions while anchoring to ledger-based DIDs and
verifiable credentials.

• Supporting a Hub-based model for efficient, real-time data exchange.

6 Chapter 2. Architecture

CHAPTER 3

Message Routing and Storage

3.1 Summary

This proposal reuses, modifies, and adapts several proposals from the Hyperledger Aries/Indy, and the DIF communi-
ties to in order to enable:

• Advanced use cases for credentials exchange, such as when the Issuer requires the User’s prior consent for
issuance

• Guaranteed message delivery - even if the Agent is temporarily unavailable

• User-specified routing of messages from mediators to their Agents

• Unified message routing protocols and APIs

• Safe storage of encrypted identities separated from the encryption keys

• Simpler model for synchronization of wallets

• Simplex and duplex messaging paradigms

Specifically, this proposal builds on the foundation laid down by these proposals:

• DIF Identity Hub

• Aries RFC 0046: Mediators and Relays

• Aries RFC 0019: Encryption Envelope

• Aries RFC 0094: Cross Domain Messaging

• Aries RFC 0050: Wallets

Here is a generic, simplified view:

7

https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0046-mediators-and-relays/README.md
https://github.com/hyperledger/aries-rfcs/tree/master/features/0019-encryption-envelope
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0094-cross-domain-messaging/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0050-wallets/README.md

TrustBloc Documentation, Release 0.0.1

3.1.1 1 - Hub Storage

Corresponds to the DIF Identity Hub’s Collections interface and Replication Protocol.

The Permissions API is disregarded because objects stored here are accessible solely by the Agent.

This storage service is plugged into the Agent’s wallet as an implementation of the Storage Interface as shown here.

3.1.2 2 - Mediator

The mediator filters messages (authorization) and routes them to the Agent of the Identity Owner’s choosing based on
user-specified rules stored in a user-specified Hub Storage location.

Mediators buffer undelivered messages sent to the Agents until confirmation of delivery.

Mediators can be extended in many different ways to support many interesting use cases. For example, an Issuer’s
Agent can request collaboration from other mediators (with prior consent from their respective Agents) in order to
fulfill a request.

3.1.3 3 - Relay Network

Messages between sovereign domains are transported via a network of relays.

Mediators may communicate through one or several relay networks as per their requirements.

For example, a mediator might leverage the public TOR relay network to protect the Agent’s privacy, or it might
simply use the internet.

3.2 Trusted Contexts

The basic exchange implied in the diagram above solves many real-world use cases, but needs to be extended to support
scenarios where the Issuer remains the Holder of the User Data - while keeping the User in the locus of control.

The User may introduce themselves directly to the other parties by sharing Peer DIDs, or they may discover these
other peers through an app that displays the public, well-known, blockchain-anchored DIDs of recognized institutions.

Mobile agent displaying parties with well-known DIDs anchored to a blockchain, all of which possess Verifiable
Credentials from a trusted Issuer (trusted issuer not shown).

Once introduced to these parties (individually), the User proceeds to create a Trusted Context between all parties by
asking them each for a new DID identifier for use in this context, along with any Verifiable Credentials required for
membership.

8 Chapter 3. Message Routing and Storage

https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md#collections
https://hackmd.io/OInEIRLxQY2s48tze0E7IQ
https://github.com/hyperledger/indy-sdk/tree/master/docs/design/003-wallet-storage#wallet-components
https://dhh1128.github.io/peer-did-method-spec
https://w3c-ccg.github.io/did-spec/
https://w3c.github.io/vc-data-model/

TrustBloc Documentation, Release 0.0.1

Setup of the Trusted Context ends with the User providing the other parties a consent receipt.

3.2.1 Relays based on Trusted Context

The previous diagram shows the logical construction of a trusted context. For greater clarity, there are Mediators and
Relay Networks between the participants that route based on the trusted context. In particular, the User Data traverses
the mediators and relay network:

3.2. Trusted Contexts 9

TrustBloc Documentation, Release 0.0.1

3.3 Putting it all together

Trust contexts are realized by:

• Using DIDs as identifiers within the context

• Using Verifiable Credentials for user data representation * Including the user’s consent receipt, which will follow
well known standard schemas

• A credential schema negotiated among the parties

• A relay network negotiated among the parties

• Mediators ensuring message delivery to the Agents

10 Chapter 3. Message Routing and Storage

https://kantarainitiative.org/file-downloads/consent-receipt-specification-v1-1-0/

TrustBloc Documentation, Release 0.0.1

Another scenario has the Issuer mediator delegating to the User mediator, in a manner similar to UMA:

3.3. Putting it all together 11

https://kantarainitiative.org/confluence/display/uma/Home

TrustBloc Documentation, Release 0.0.1

12 Chapter 3. Message Routing and Storage

CHAPTER 4

Privacy-Enhanced OAuth 2.0

Status: DRAFT

Table of Contents

• Contributors

• Introduction

– Purpose of this document

– Motivation

– Objectives

– Constraints

• System Overview

• References

– Normative References

– Informative References

4.1 Contributors

• George Aristy (SecureKey Techologies)

13

TrustBloc Documentation, Release 0.0.1

4.2 Introduction

4.2.1 Purpose of this document

This document describes a reference implementation of OAuth 2.0 with unregistered clients communicating and au-
thenticating securely over the backchannel with decentralized identifiers and verifiable credentials.

4.2.2 Motivation

There is a desire to leverage existing OAuth 2.0 infrastructure to build a privacy-enhanced data sharing solution.

Finalized in 2012, OAuth 2.0 ([RFC6749]), is an established authorization framework well suited to give a piece of
software access to protected resources with the owner’s consent. It was not, however, designed with the principles of
Privacy by Design ([PRIV-DESIGN]) in mind.

First published in 2009, the principles of privacy by design became widely known after the GDPR adopted them
([GDPR-PRIV]) and began enforcement in 2018. We seek to address two key principles of privacy by design that
OAuth 2.0 does not:

Protect the user’s privacy by keeping the solution User-Centric

• Use the authorization grant mechanism of OAuth 2.0 to keep the user in the locus of control.

• Use decentralized identifiers (DIDs) ([DID-CORE]) so the user (and the other actors) can avoid undesired cor-
relation.

Protect the user’s privacy with end-to-end security

• Use end-to-end authenticated encryption of the messages and data while in transit.

4.2.3 Objectives

1. Allow a client to request the user for access to resources hosted on a resource server.

2. Conceal the client’s location from the resource server’s location (and vice versa).

3. Allow the user to grant the client access to the resources.

4. Allow the user to revoke access to the client.

5. Allow the user to indicate the location of these resources to the client.

6. Minimize exposure of the client’s identity from the resource server (and vice versa).

7. Ensure confidentiality in communications through the frontchannel.

8. Ensure confidentiality in communications through the backchannel.

4.2.4 Constraints

1. Use OAuth 2.0 (authorization code grant type).

2. No modification of OAuth components in client nor resource server domains.

3. Use decentralized identifiers.

14 Chapter 4. Privacy-Enhanced OAuth 2.0

TrustBloc Documentation, Release 0.0.1

4.3 System Overview

Fig. 1: System Overview
• Green arrows indicate frontchannel communication.

• Blue arrows indicate backchannel communication over a secure transport.

• Black arrows indicate backchannel communication in their normal (HTTP) form.

The figure above shows the main components of the system. It depicts a normal OAuth 2 setup with the client, resource
owner, authorization server and resource server roles but adds two new components:

Broker:

OAuth 2.0 requires clients to be registered at the authorization server1 before sending the authorization request. Our
objectives preclude this, therefore the user requires a “broker” component that will relay the authorization request
appropriately and to the right location.

Adapter:

The adapters pack and unpack normal authorization requests, token exchange/refresh requests, and requests to the
resources to and from HTTP transport and secure, end-to-end encrypted channels between the user, client, and server
domains. They also isolate the OAuth 2 components in the client and server domains from the complexity of the
network.

1 As per section 2.4 of [RFC6749] , unregistered clients are out of scope but not precluded by the OAuth2 specification. However, it is difficult
to reconcile this in a meaningful way with the fact that authorization servers assign the client_id to clients (section 2.2) to ensure their uniqueness
so as to avoid impersonation attacks (see section 4.13 of [O2-BCP]).

4.3. System Overview 15

TrustBloc Documentation, Release 0.0.1

4.4 References

4.4.1 Normative References

4.4.2 Informative References

16 Chapter 4. Privacy-Enhanced OAuth 2.0

CHAPTER 5

Projects

5.1 Edge

• Edge-Adapter

• Edge-Agent

• Edge-Core

• Edge-Sandbox

• Edge-Service

5.2 Bloc Hub

• Bloc-Hub

5.3 Sidetree

• Sidetree-Node

5.4 Hyperledger Fabric Extensions

• Fabric-Mod

• Fabric-Peer-Ext

• Fabric-SDK-Go-Ext

17

https://github.com/trustbloc/edge-adapter
https://github.com/trustbloc/edge-agent
https://github.com/trustbloc/edge-core
https://github.com/trustbloc/edge-sandbox
https://github.com/trustbloc/edge-service
https://trustbloc.readthedocs.io/projects/bloc-hub/en/latest/
https://trustbloc.readthedocs.io/projects/sidetree-node/en/latest/
https://trustbloc.readthedocs.io/projects/fabric-mod/en/latest/
https://trustbloc.readthedocs.io/projects/fabric-peer-ext/en/latest/
https://github.com/trustbloc/fabric-sdk-go-ext/blob/master/README.md

TrustBloc Documentation, Release 0.0.1

5.5 Upstream Project

• Fabric-SDK-Go

• Hyperledger Fabric

• Hyperledger Aries

• DIF

18 Chapter 5. Projects

https://github.com/hyperledger/fabric-sdk-go/blob/master/README.md
https://hyperledger-fabric.readthedocs.io/en/latest/
https://www.hyperledger.org/projects/aries
https://identity.foundation/

CHAPTER 6

Verifiable Credential Service (VCS)

6.1 What is a Verifiable Credential (VC)?

We use credentials everyday. A driver’s license issued by the government certify that we are capable of operating a
vehicle on the road. A Permanent Residence card shows the immigration status of an individual.

A verifiable credential is then a document whose contents can be cryptographically proven/verified (VC-TERM) to be
true. A VC could hold the same data that a physical credential does. Within the scope of TrustBloc projects, this act
of verifying credentials can be done with the aid of technology such as digital identities and signatures. The use of
digital signatures adds to the integrity of a credential when it is presented.

Holders of verifiable credentials can generate verifiable presentations and then share these verifiable presentations
with verifiers to prove they possess verifiable credentials with certain characteristics. Both verifiable credentials and
verifiable presentations can be transmitted rapidly, making them more convenient than their physical counterparts
when trying to establish trust at a distance. (VC-DEF)

6.2 Edge-Service

TrustBloc’s Edge-Service contains servers that handle the issuance and verification of verifiable credentials.

6.2.1 Configuring the service

Edge-Service can be used in the following modes:

• Issuer

• Verifier

• Holder

• Governance

19

https://github.com/trustbloc/edge-service

TrustBloc Documentation, Release 0.0.1

Get vcs-rest from GitHub packages.

Configuration flags for the server:

Start vc-rest inside the edge-service

Usage:
vc-rest start [flags]

Flags:
--api-token string Check for bearer token in the

→˓authorization header (optional). Alternatively, this can be set with the following
→˓environment variable: VC_REST_API_TOKEN

-f, --backoff-factor string If no VC is found when attempting to
→˓retrieve a VC from the EDV, this is the factor to increase the time to wait for
→˓subsequent retries after the first. Alternatively, this can be set with the
→˓following environment variable: BACKOFF-FACTOR

-b, --bloc-domain string Bloc domain
--database-prefix string An optional prefix to be used when

→˓creating and retrieving underlying databases. Alternatively, this can be set with
→˓the following environment variable: DATABASE_PREFIX

-t, --database-type string The type of database to use for
→˓everything except key storage. Supported options: mem, couchdb. Alternatively, this
→˓can be set with the following environment variable: DATABASE_TYPE

-v, --database-url string The URL of the database. Not needed if
→˓using memstore. For CouchDB, include the username:password@ text if required.
→˓Alternatively, this can be set with the following environment variable: DATABASE_URL

-e, --edv-url string URL EDV instance is running on. Format:
→˓HostName:Port.

--governance-claims-file string Path to governance
→˓claimsAlternatively, this can be set with the following environment variable: VC_
→˓REST_GOVERNANCE_CLAIMS_FILE

-h, --help help for start
-u, --host-url string URL to run the vc-rest instance on.

→˓Format: HostName:Port.
-x, --host-url-external string Host External Name:Port This is the URL

→˓for the host server as seen externally. If not provided, then the host url will be
→˓used here. Alternatively, this can be set with the following environment variable:
→˓VC_REST_HOST_URL_EXTERNAL

-i, --initial-backoff-millisec string If no VC is found when attempting to
→˓retrieve a VC from the EDV, this is the time to wait (in milliseconds) before the
→˓first retry attempt. Alternatively, this can be set with the following environment
→˓variable: INITIAL_BACKOFF_MILLISEC

--kms-secrets-database-prefix string An optional prefix to be used when
→˓creating and retrieving the underlying KMS secrets database. Alternatively, this
→˓can be set with the following environment variable: KMSSECRETS_DATABASE_PREFIX

-k, --kms-secrets-database-type string The type of database to use for storage
→˓of KMS secrets. Supported options: mem, couchdb. Alternatively, this can be set
→˓with the following environment variable: KMSSECRETS_DATABASE_TYPE

-s, --kms-secrets-database-url string The URL of the database. Not needed if
→˓using memstore. For CouchDB, include the username:password@ text if required. It's
→˓recommended to not use the same database as the one set in the database-url flag
→˓(or the DATABASE_URL env var) since having access to the KMS secrets may allow the
→˓host of the provider to decrypt EDV encrypted documents. Alternatively, this can be
→˓set with the following environment variable: DATABASE_URL

-l, --log-level string Logging level to set. Supported
→˓options: CRITICAL, ERROR, WARNING, INFO, DEBUG.Defaults to info if not set. Setting
→˓to debug may adversely impact performance. Alternatively, this can be set with the
→˓following environment variable: LOG_LEVEL

(continues on next page)

20 Chapter 6. Verifiable Credential Service (VCS)

https://github.com/trustbloc/edge-service/packages

TrustBloc Documentation, Release 0.0.1

(continued from previous page)

-a, --max-retries string If no VC is found when attempting to
→˓retrieve a VC from the EDV, this is the maximum number of times to retry retrieval.
→˓Defaults to 5 if not set. Alternatively, this can be set with the following
→˓environment variable: MAX-RETRIES

-m, --mode string Mode in which the vc-rest service will
→˓run. Possible values: ['issuer', 'verifier', 'holder', 'combined'] (default:
→˓combined).

--request-tokens stringArray Tokens used for http request
→˓Alternatively, this can be set with the following environment variable: VC_REST_
→˓REQUEST_TOKENS

--tls-cacerts stringArray Comma-Separated list of ca certs path.
→˓Alternatively, this can be set with the following environment variable: VC_REST_TLS_
→˓CACERTS

--tls-systemcertpool string Use system certificate pool. Possible
→˓values [true] [false]. Defaults to false if not set. Alternatively, this can be set
→˓with the following environment variable: VC_REST_TLS_SYSTEMCERTPOOL

-r, --universal-resolver-url string Universal Resolver instance is running
→˓on. Format: HostName:Port.

Example: Running in Issuer Mode

The following is a snippet of a Docker Compose TM file showing how Edge Service can be configured. It makes use
of environment variables declared here.

issuer.vcs.example.com:
container_name: issuer.vcs.example.com
image: ${VCS_IMAGE}:${VCS_IMAGE_TAG}
environment:
- VC_REST_HOST_URL=0.0.0.0:8070
- VC_REST_HOST_URL_EXTERNAL=https://issuer-vcs.trustbloc.local
- EDV_REST_HOST_URL=https://edv.trustbloc.local/encrypted-data-vaults
- BLOC_DOMAIN=${BLOC_DOMAIN}
- UNIVERSAL_RESOLVER_HOST_URL=https://did-resolver.trustbloc.local/1.0/identifiers
- VC_REST_MODE=issuer
- DATABASE_TYPE=couchdb
- DATABASE_URL=${COUCHDB_USERNAME}:${COUCHDB_PASSWORD}@shared.couchdb:5984
- DATABASE_PREFIX=issuer
- KMSSECRETS_DATABASE_TYPE=couchdb
- KMSSECRETS_DATABASE_URL=${COUCHDB_USERNAME}:${COUCHDB_PASSWORD}@shared.

→˓couchdb:5984
- KMSSECRETS_DATABASE_PREFIX=issuer
- VC_REST_TLS_CACERTS=/etc/tls/trustbloc-dev-ca.crt
- VC_REST_TLS_SYSTEMCERTPOOL=true
- VC_REST_API_TOKEN=vcs_issuer_rw_token
- VIRTUAL_HOST=issuer-vcs.trustbloc.local

ports:
- 8070:8070

entrypoint: ""
wait 20 seconds for couchdb to start
command: /bin/sh -c "sleep 20;/tmp/scripts/vcs_configure.sh& vc-rest start"
volumes:
- ../scripts/:/tmp/scripts #https://github.com/trustbloc/edge-sandbox/tree/master/

→˓test/bdd/fixtures/scripts
- ../keys/tls:/etc/tls

depends_on:

(continues on next page)

6.2. Edge-Service 21

https://github.com/trustbloc/edge-sandbox/blob/master/test/bdd/fixtures/demo/.env

TrustBloc Documentation, Release 0.0.1

(continued from previous page)

- edv.example.com
networks:
- demo-net

edv.example.com:
container_name: edv.example.com
image: ${EDV_IMAGE}:${EDV_IMAGE_TAG}
environment:
- EDV_HOST_URL=0.0.0.0:8081
- EDV_DATABASE_TYPE=couchdb
- EDV_DATABASE_URL=${COUCHDB_USERNAME}:${COUCHDB_PASSWORD}@shared.couchdb:5984
- EDV_DATABASE_PREFIX=edv
- VIRTUAL_HOST=edv.trustbloc.local

ports:
- 8081:8081

command: start
networks:
- demo-net

Examples of how the other modes can be configures is available in the following repos:

• edge-sandbox

• edge-service

6.2.2 Deploying the service

In order to deploy Edge-Service, the following components are required.

Note: An example of how these components interact together is shown here.

Sidetree

Sidetree Fabric

22 Chapter 6. Verifiable Credential Service (VCS)

https://github.com/trustbloc/edge-sandbox/blob/master/test/bdd/fixtures/demo/docker-compose-edge-components.yml
https://github.com/trustbloc/edge-service/blob/master/test/bdd/fixtures/vc-rest/docker-compose.yml
https://github.com/trustbloc/edge-sandbox/tree/master/test/bdd/fixtures/demo

TrustBloc Documentation, Release 0.0.1

Sidetree Mock

Edge Components

6.2. Edge-Service 23

TrustBloc Documentation, Release 0.0.1

DID Resolvers

DID Registrars

24 Chapter 6. Verifiable Credential Service (VCS)

TrustBloc Documentation, Release 0.0.1

6.2.3 VCS Components (CHAPI + VC Services)

6.2.4 Issuing a VC

In order to issue a Verifiable Credential, you will need to first create a profile.

1. Issue a VC

HTTP POST /{profile}/credentials/issueCredential

{
"credential":{

"@context":[
"https://www.w3.org/2018/credentials/v1"

],
"id":"http://example.edu/credentials/1872",
"type":"VerifiableCredential",
"credentialSubject":{

"id":"did:example:ebfeb1f712ebc6f1c276e12ec21"
},
"issuer":{

"id":"did:example:76e12ec712ebc6f1c221ebfeb1f",
"name":"Example University"

},
"issuanceDate":"2010-01-01T19:23:24Z",
"credentialStatus":{

"id":"https://example.gov/status/24",
"type":"CredentialStatusList2017"

}
},
"options":{

"assertionMethod":"did:trustbloc:testnet.trustbloc.
→˓local:EiAiijiRNEAflOr6ZOJN5A7BCFQD1pwFMI1MPzHr3bXezg=="

}
}

More details here.

Try it here.

2. Compose and Issue a VC

HTTP POST /{profile}/credentials/composeAndIssueCredential

{
"issuer":"did:example:uoweu180928901",
"subject":"did:example:oleh394sqwnlk223823ln",
"types":[

"UniversityDegree"
],
"issuanceDate":"2020-03-25T19:38:54.45546Z",
"expirationDate":"2020-06-25T19:38:54.45546Z",
"claims":{

(continues on next page)

6.2. Edge-Service 25

https://github.com/trustbloc/edge-service/blob/master/docs/vc-rest/api_overview.md#3-issue-verifiable-credential---post-profilecredentialsissuecredential
https://w3c-ccg.github.io/vc-http-api/#/Issuer/issueCredential

TrustBloc Documentation, Release 0.0.1

(continued from previous page)

"name":"John Doe"
},
"evidence":{

"id":"http://example.com/policies/credential/4",
"type":"IssuerPolicy"

},
"termsOfUse":{

"id":"http://example.com/policies/credential/4",
"type":"IssuerPolicy"

},
"proofFormat":"jws",
"proofFormatOptions":{

"kid":"did:trustbloc:testnet.trustbloc.local:EiAtPEWAphdPVRxlKpr8N43uyLMhgF-
→˓9SFmYfINVpDIzUA==#key-1"

}
}

More details here.

6.2.5 Validating a VC

HTTP POST /verifier/credentials

{
"verifiableCredential":{

"@context":[
"https://www.w3.org/2018/credentials/v1",
"https://www.w3.org/2018/credentials/examples/v1"

],
"credentialSchema":[

],
"credentialStatus":{

"id":"http://issuer.vc.rest.example.com:8070/status/1",
"type":"CredentialStatusList2017"

},
"credentialSubject":{

"degree":{
"degree":"MIT",
"type":"BachelorDegree"

},
"id":"did:example:ebfeb1f712ebc6f1c276e12ec21",
"name":"Jayden Doe",
"spouse":"did:example:c276e12ec21ebfeb1f712ebc6f1"

},
"id":"http://example.gov/credentials/3732",
"issuanceDate":"2020-03-16T22:37:26.544Z",
"issuer":{

"id":"did:example:oakek12as93mas91220dapop092",
"name":"University"

},
"proof":{

"created":"2020-04-09T15:35:35Z",
"jws":"eyJhbGciOiJFZERTQSIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..

→˓kN1srfFqoiejHJwxM8Y0Y9yIonAvFeF2Aoiv6_LTkPqcNXc2rXwT94-uO_
→˓PQJbxWJgTD78MvpfCJWsUSRvgCBw",

(continues on next page)

26 Chapter 6. Verifiable Credential Service (VCS)

https://github.com/trustbloc/edge-service/blob/master/docs/vc-rest/api_overview.md#4-compose-and-issue-verifiable-credential---post-profilecredentialscomposeandissuecredential

TrustBloc Documentation, Release 0.0.1

(continued from previous page)

"proofPurpose":"assertionMethod",
"type":"Ed25519Signature2018",
"verificationMethod":"did:trustbloc:testnet.trustbloc.

→˓local:EiD3KVRkHAHt6aLO4Kp5PSO3pNhAY_GPZXuKUekVk1uboQ==#key-1"
},
"type":[

"VerifiableCredential",
"UniversityDegreeCredential"

]
},
"options":{

"checks":[
"proof"

]
}

}

More details here.

Try it here.

6.3 Connecting to the TestNet

TODO

6.4 Using Edge-Service

To use the demo, navigate to the Demo Issuer homepage.

Then follow the steps in the videos below for their respective demonstrations.

These demos make use of Edge-Sandbox which is a demo environment for edge-service.

6.4.1 Register A Wallet

Be sure to register your wallet as in the video below:

6.4.2 Issue a Credit Score Report

6.4.3 Issue a Driver’s License

6.5 References

6.3. Connecting to the TestNet 27

https://github.com/trustbloc/edge-service/blob/master/docs/vc-rest/api_overview.md#1-verify-credential---post-verifiercredentials
https://w3c-ccg.github.io/vc-http-api/#/Verifier/verifyCredential
https://demo-issuer.sandbox.trustbloc.dev
https://github.com/trustbloc/edge-sandbox

TrustBloc Documentation, Release 0.0.1

28 Chapter 6. Verifiable Credential Service (VCS)

CHAPTER 7

Adapters

7.1 What is an Adapter?

TrustBloc’s Edge-Adapter acts as a go-between for Relying Party (RP) and Issuer components to support DIDComm
operations.

TrustBloc’s Edge-Adapter can be used to run an Issuer and an RP.

Get the adapter here.

Here are the flags for the server:

Start adapter-rest inside the edge-adapter

Usage:
adapter-rest start [flags]

Flags:
--didcomm-db-path string Path to database. Alternatively,

→˓this can be set with the following environment variable: ADAPTER_REST_DIDCOMM_DB_
→˓PATH

--didcomm-inbound-host string Inbound Host Name:Port. This is used
→˓internally to start the didcomm server. Alternatively, this can be set with the
→˓following environment variable: ADAPTER_REST_DIDCOMM_INBOUND_HOST

--didcomm-inbound-host-external string Inbound Host External Name:Port.
→˓This is the URL for the inbound server as seen externally. If not provided, then
→˓the internal inbound host will be used here. Alternatively, this can be set with
→˓the following environment variable: ADAPTER_REST_DIDCOMM_INBOUND_HOST_EXTERNAL

--dids-trustbloc-domain string URL to the did:trustbloc consortium
→˓'s domain. Alternatively, this can be set with the following environment variable:
→˓ADAPTER_REST_TRUSTBLOC_DOMAIN

--dsn string Datasource Name with credentials if
→˓required. Format must be <driver>:[//]<driver-specific-dsn>. Examples: 'mysql://
→˓root:secret@tcp(localhost:3306)/adapter', 'mem://test'. Supported drivers are [mem,
→˓mysql]. Alternatively, this can be set with the following environment variable:
→˓ADAPTER_REST_DSN (continues on next page)

29

https://github.com/trustbloc/edge-adapter
https://github.com/trustbloc/edge-adapter/tree/master/cmd/adapter-rest

TrustBloc Documentation, Release 0.0.1

(continued from previous page)

--dsn-timeout string Total time in seconds to wait until
→˓the datasource is available before giving up. Default: seconds. Alternatively,
→˓this can be set with the following environment variable: ADAPTER_REST_DSN_TIMEOUT

--governance-vcs-url string Governance VCS instance is running
→˓on. Format: HostName:Port.

-h, --help help for start
-u, --host-url string URL to run the adapter-rest

→˓instance on. Format: HostName:Port.
--hydra-url string Base URL to the hydra service.

→˓Alternatively, this can be set with the following environment variable: ADAPTER_
→˓REST_HYDRA_URL

--log-level string Sets the logging level. Possible
→˓values are [DEBUG, INFO, WARNING, ERROR, CRITICAL] (default is INFO). Alternatively,
→˓ this can be set with the following environment variable: ADAPTER_REST_LOGLEVEL
→˓(default "INFO")

--mode string Mode in which the edge-adapter
→˓service will run. Possible values: ['issuer', 'rp'].

--op-url string URL for the OIDC provider.
→˓Alternatively, this can be set with the following environment variable: ADAPTER_
→˓REST_OP_URL

--presentation-definitions-file string Path to presentation definitions
→˓file with input_descriptors.

--request-tokens stringArray Tokens used for http request
→˓Alternatively, this can be set with the following environment variable: ADAPTER_
→˓REST_REQUEST_TOKENS

--static-path string Path to the folder where the static
→˓files are to be hosted under /ui.Alternatively, this can be set with the following
→˓environment variable: ADAPTER_REST_STATIC_FILES

--tls-cacerts stringArray Comma-Separated list of ca certs
→˓path. Alternatively, this can be set with the following environment variable:
→˓ADAPTER_REST_TLS_CACERTS

--tls-serve-cert string Path to the server certificate to
→˓use when serving HTTPS. Alternatively, this can be set with the following
→˓environment variable: ADAPTER_REST_TLS_SERVE_CERT

--tls-serve-key string Path to the private key to use when
→˓serving HTTPS. Alternatively, this can be set with the following environment
→˓variable: ADAPTER_REST_TLS_SERVE_KEY

--tls-systemcertpool string Use system certificate pool.
→˓Possible values [true] [false]. Defaults to false if not set. Alternatively, this
→˓can be set with the following environment variable: ADAPTER_REST_TLS_SYSTEMCERTPOOL

-r, --universal-resolver-url string Universal Resolver instance is
→˓running on. Format: HostName:Port.

7.1.1 RP Adapter

The Relying Party (RP) Adapter enables standard OpenID Connect flows on top of DIDComm.

Configuring the RP Adapter

The following is a snippet of a Docker Compose TM file showing how Edge Adapter can be configured for use as an
RP.

rp.adapter.rest.example.com:
container_name: rp.adapter.rest.example.com

(continues on next page)

30 Chapter 7. Adapters

https://github.com/trustbloc/edge-adapter

TrustBloc Documentation, Release 0.0.1

(continued from previous page)

image: ${RP_ADAPTER_REST_IMAGE}:latest
environment:
- ADAPTER_REST_HOST_URL=0.0.0.0:8070
- ADAPTER_REST_TLS_CACERTS=/etc/tls/ec-cacert.pem
- ADAPTER_REST_GOVERNANCE_VCS_URL=http://governance.vcs.example.com:8066
- ADAPTER_REST_TLS_SYSTEMCERTPOOL=true
- ADAPTER_REST_TLS_SERVE_CERT=/etc/tls/ec-pubCert.pem
- ADAPTER_REST_TLS_SERVE_KEY=/etc/tls/ec-key.pem
- ADAPTER_REST_DSN=mysql://rpadapter:rpadapter-secret-pw@tcp(mysql:3306)/
- ADAPTER_REST_OP_URL=http://PUT-SOMETHING-HERE.com
- ADAPTER_REST_PRESENTATION_DEFINITIONS_FILE=/etc/testdata/

→˓presentationdefinitions.json
- ADAPTER_REST_DIDCOMM_INBOUND_HOST=0.0.0.0:8071
- ADAPTER_REST_DIDCOMM_INBOUND_HOST_EXTERNAL=http://rp.adapter.rest.example.

→˓com:8071
- ADAPTER_REST_TRUSTBLOC_DOMAIN=${BLOC_DOMAIN}
- ADAPTER_REST_HYDRA_URL=https://hydra.trustbloc.local:4445
- ADAPTER_REST_UNIVERSAL_RESOLVER_URL=http://did.rest.example.com:8072/1.0/

→˓identifiers
- ADAPTER_REST_DSN_TIMEOUT=45

ports:
- 8070:8070

entrypoint: ""
command: /bin/sh -c "adapter-rest start"
volumes:
- ../keys/tls:/etc/tls
- ../testdata:/etc/testdata

networks:
- bdd_net

depends_on:
- hydra
- mysql

See this example in full here.

Deploying the RP Adapter

To learn about integrating your OIDC client to a TrustBloc RP Adapter, read our integration guide.

7.1.2 Issuer Adapter

This component is an intermediary to act on behalf of an Issuer to perform DIDComm related use cases.

Configuring the Issuer Adapter

The following is a snippet of a Docker Compose TM file showing how Edge Adapter can be configured for use as an
issuer.

issuer.adapter.rest.example.com:
container_name: issuer.adapter.rest.example.com
image: ${ISSUER_ADAPTER_REST_IMAGE}:latest
environment:
- ADAPTER_REST_HOST_URL=0.0.0.0:9070

(continues on next page)

7.1. What is an Adapter? 31

https://github.com/trustbloc/edge-adapter/blob/master/test/bdd/fixtures/adapter-rest/docker-compose.yml
https://github.com/trustbloc/edge-adapter/blob/master/docs/rp/integration/relying_parties.md
https://github.com/trustbloc/edge-adapter

TrustBloc Documentation, Release 0.0.1

(continued from previous page)

- ADAPTER_REST_GOVERNANCE_VCS_URL=http://governance.vcs.example.com:8066
- ADAPTER_REST_TLS_CACERTS=/etc/tls/ec-cacert.pem
- ADAPTER_REST_TLS_SYSTEMCERTPOOL=true
- ADAPTER_REST_TLS_SERVE_CERT=/etc/tls/ec-pubCert.pem
- ADAPTER_REST_TLS_SERVE_KEY=/etc/tls/ec-key.pem
- ADAPTER_REST_DIDCOMM_INBOUND_HOST=0.0.0.0:9071
- ADAPTER_REST_DIDCOMM_INBOUND_HOST_EXTERNAL=http://issuer.adapter.rest.example.

→˓com:9071
- ADAPTER_REST_TRUSTBLOC_DOMAIN=${BLOC_DOMAIN}
- ADAPTER_REST_UNIVERSAL_RESOLVER_URL=http://did.rest.example.com:8072/1.0/

→˓identifiers
- ADAPTER_REST_DSN=mysql://issueradapter:issueradapter-secret-pw@tcp(mysql:3306)/
- ADAPTER_REST_DSN_TIMEOUT=45

ports:
- 9070:9070
- 9071:9071

entrypoint: ""
command: /bin/sh -c "adapter-rest start"
volumes:
- ../keys/tls:/etc/tls

networks:
- bdd_net

See this example in full here.

Deploying the Issuer Adapter

Integration guide

7.1.3 Adapter Components (CHAPI + DIDComm)

7.1.4 Flows

The Evidence and Driver’s License (DL) Flow

These components allow users to access services with a VC such as a Driver’s License. They are:

• Issuer Adapter

• RP Adapter

Combined DL, Evidence & Credit Score Flow

Here is an overfiew of the Bank Account usecase.

This scenario shows how a person can open a bank account using both local and remote credentials. A local credential
is stored in a user’s wallet while the remote credential is stored with a third-party.

In order to create the bank account, a Drivers License (local credential), Drivers Licence Evidence (remote credential)
and Credit Score (remote credential) are required.

These are issued as VCs from a Drivers License Issuer and a Credit Score Issuer.

32 Chapter 7. Adapters

https://github.com/trustbloc/edge-adapter/blob/master/test/bdd/fixtures/adapter-rest/docker-compose.yml
https://github.com/trustbloc/edge-adapter/tree/master/docs/issuer
https://github.com/trustbloc/edge-sandbox/blob/master/docs/demo/new-bank-account-usecase.md
https://demo-issuer.sandbox.trustbloc.dev/drivinglicense
https://demo-issuer.sandbox.trustbloc.dev/creditscore

TrustBloc Documentation, Release 0.0.1

This uses the Adapter/DIDComm flow.

Watch the demos below.

Creating a New Bank Account

DL, Evidence and Credit Score

7.1. What is an Adapter? 33

https://github.com/trustbloc/edge-sandbox/blob/master/docs/demo/sandbox_adapter_playground.md

TrustBloc Documentation, Release 0.0.1

34 Chapter 7. Adapters

CHAPTER 8

Direct Wallet/CHAPI Interactions

8.1 VCS

• Integration guide

8.2 Wallet

• Integration guide

35

https://github.com/trustbloc/edge-service/tree/master/docs/vc-rest
https://github.com/trustbloc/edge-agent/tree/master/docs

TrustBloc Documentation, Release 0.0.1

36 Chapter 8. Direct Wallet/CHAPI Interactions

CHAPTER 9

How to Contribute!

Thank you for showing interest to contribute to TrustBloc. Visit Contribution Guideline.

9.1 Setup

9.2 Fork on Github

Before you do anything else, login/signup on GitHub and fork TrustBlock Projects from the GitHub project.

9.3 Clone your fork locally

If you have git-scm installed, you now clone your git repo using the following command-line argument where <my-
github-name> is your account name on GitHub:

For example you fork fabric-mod sub project:

git clone git@github.com:<my-github-name>/fabric-mod.git

9.4 Installing TrustBloc Projects

Follow our installation instructions defined on each sub projects.Please record any difficulties you have and share them
with the TrustBloc community by creating an issue.

9.5 Issues

TODO

37

https://github.com/trustbloc/community/blob/master/CONTRIBUTING.md
https://github.com/trustbloc

TrustBloc Documentation, Release 0.0.1

9.6 Tips

TODO: how to define issues

9.7 Setting up topic branches and generating pull requests

To create a topic branch, its easiest to use the convenient -b argument to git checkout:

git checkout -b fix-update-branch
Switched to a new branch 'fix-update-branch'

You should use a verbose enough name for your branch so it is clear what it is about. Now you can commit your
changes and regularly merge in the upstream develop as described below. When you are ready to generate a pull
request, either for preliminary review, or for consideration of merging into the project you must first push your local
topic branch back up to GitHub:

git push origin fix-update-branch

Now when you go to your fork on GitHub, you will see this branch listed under the “Source” tab where it says “Switch
Branches”. Go ahead and select your topic branch from this list, and then click the “Pull request” button.

Here you can add a comment about your branch. If this in response to a submitted issue, it is good to put a link to
that issue in this initial comment. The repo managers will be notified of your pull request and it will be reviewed
(see below for best practices). Note that you can continue to add commits to your topic branch (and push them up to
GitHub) either if you see something that needs changing, or in response to a reviewer’s comments. If a reviewer asks
for changes, you do not need to close the pull and reissue it after making changes. Just make the changes locally, push
them to GitHub, then add a comment to the discussion section of the pull request.

9.8 How to get your pull request accepted

• If you add code/views you need to add tests! TODO

• Don’t mix code changes with whitespace cleanup TODO

• Keep your pull requests limited to a single issue TODO

9.9 How pull requests are checked, tested, and done

TODO

9.10 Contributing Organizations

• SecureKey Technologies.

38 Chapter 9. How to Contribute!

https://docs.google.com/document/d/1ENMO-S7i0ef09IRx5teE-eJbRMFsaKSXEdatcufvjPM/edit

CHAPTER 10

Have Questions?

We try to maintain a comprehensive set of documentation for various audiences. However, we realize that often there
are questions that remain unanswered. For any technical questions relating to a TrustBloc project not answered here,
please use

Gitter (an alternative to Slack) on the #trustbloc-questions channel.

Note: Please, when asking about problems you are facing tell us about the environment in which you are experiencing
those problems including the OS, which version of Docker you are using, etc.

Note: If you have questions not addressed by this documentation, please visit the Have Questions? page for some
tips on where to find additional help.

39

https://gitter.im/trustbloc/community?source=orgpage

TrustBloc Documentation, Release 0.0.1

40 Chapter 10. Have Questions?

Bibliography

[RFC6749] D. Hardt (Microsoft), “IETF RFC6749 - The OAuth 2.0 Authorization Framework”, October 2012

[O2-BCP] T. Lodderstedt (yes.com), J. Bradley (Yubico), A. Labunets (Facebook), D. Fett (yes.com), “OAuth
2.0 Security Best Current Practice”, version 13.

[DID-CORE] Drummond Reed (Evernym), Manu Sporny (Digital Bazaar), Markus Sabadello (Danube Tech), Dave
Longley (Digital Bazaar), Christopher Allen (Blockchain Commons), Ryan Grant, “Decentralized Iden-
tifiers (DIDs) v1.0”, W3C Working Draft 10 December 2019

[PRIV-DESIGN] Ann Cavoukian (Information & Privacy Commissioner of Ontario, Canada), “Privacy by Design -
The 7 Foundational Principles”, Retrieved December 10 2019

[GDPR-PRIV] European Data Protection Supervisor, ‘"Preliminary Opinion on pri-
vacy by design" <https://edps.europa.eu/sites/edp/files/publication/18-05-
31_preliminary_opinion_on_privacy_by_design_en_0.pdf>"‘_, May 31 2018

[VC-DEF] Manu Sporny; Grant Noble; Dave Longley; David Chadwick, “Verifiable Credentials Data Model 1.0”,
November 2019

[VC-TERM] Manu Sporny; Grant Noble; Dave Longley; David Chadwick, “Verifiable Credentials Data Model 1.0”,
November 2019

41

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13
https://w3c.github.io/did-core/
https://w3c.github.io/did-core/
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
https://www.w3.org/TR/vc-data-model/#what-is-a-verifiable-credential
https://www.w3.org/TR/vc-data-model/#terminology

	Introduction
	Architecture
	Message Routing and Storage
	Privacy-Enhanced OAuth 2.0
	Projects
	Verifiable Credential Service (VCS)
	Adapters
	Direct Wallet/CHAPI Interactions
	How to Contribute!
	Have Questions?
	Bibliography

