

TrustBloc : Interoperable Development Framework

[image: _images/TrustBloc-Final.png]

	Introduction

	Architecture

	Orb

	Projects

	Verifiable Credential Service (VCS)

	Key Management System (KMS)

	Adapters

	Direct Wallet/CHAPI Interactions

	Blinded Routing

	Message Routing and Storage

	Privacy-Enhanced OAuth 2.0

	How to Contribute!

	Have Questions?

Note

If you have questions not addressed by this documentation, please visit the Have Questions?
page for some tips on where to find additional help.

Introduction

This is a guide for installing and deploying TrustBloc projects. If you’d like to contribute, fork us on GitHub! [https://github.com/trustbloc].

What is TrustBloc?

An interoperability initiative aimed at establishing common standards and
development frameworks for next generation digital identity networks.

Why use TrustBloc?

Several projects exist today with the goal of creating digital identities that would allow everyday
users to have self-governance over the storage, distribution and control of their identity.
However many of these solutions are only offered partially and may not integrate well with each other.

TrustBloc provides the end-to-end architecture that enables the deployment of a production-ready
digital identity platform.

Architecture

[image: _images/platform_components.png]
Diagram represents an overview of the components related to the TrustBloc initiative.

The TrustBloc initiative provides a common infrastructure for consortium to enable document provenance and data exchange, while still allowing these consortiums to differentiate based on their service offerings. We are building on top of existing community efforts from Hyperledger Fabric along with the proposed Hyperledger Aries project.

The TrustBloc initiative aims to provide consortium-based document provenance and services to reduce trust obstacles. We are enabling DIDs to be managed and exposed from Fabric, and more generically enabling document provenance. The following features are early goals of the initiative:

	Provide out-of-the-box capabilities for document provenance (including DIDs).

	Enhance Hyperledger Fabric private collections to support SideTrees – allowing identifiers and documents to be anchored to a channel without performing individual Fabric transaction for each identifier or document.

	Enable off-chain distributed storage model to support transactions (e.g., transient storage, content-addressable storage).

	Support a storage and query model for data scoped to a particular organization.

Data Exchange Components

TrustBloc will also provide a verifiable credential exchange flow. We are enabling a model for digital identity exchange based on DIDs, Verifiable Credentials, and Hubs. This will be achieved by:

	Leveraging emerging community specifications (e.g., DIDs and Verifiable Credentials).

	Enabling usage of Peer DIDs to establish data exchange transactions while anchoring to ledger-based DIDs and verifiable credentials.

	Supporting a Hub-based model for efficient, real-time data exchange.

Orb

	Introduction

	Getting Started Tutorial

	Client Libraries and Utilities

	System Services

	Verifiable Credential Transparency (VCT)

	REST Endpoints

	Startup Parameters

	Data Model

Introduction

Orb implements the following specifications: did:orb [https://trustbloc.github.io/did-method-orb/],
Activity Anchors [https://trustbloc.github.io/activityanchors/]. The did:orb method is based on the
Sidetree [https://identity.foundation/sidetree/spec/] specification and Activity Anchors is based on the
ActivityPub [https://www.w3.org/TR/activitypub/],
ActivityStreams [https://www.w3.org/TR/activitystreams-core/], and
Linkset [https://datatracker.ietf.org/doc/draft-ietf-httpapi-linkset/] specifications.

Services

A typical Orb domain consists of the following services:

	Orb [https://github.com/trustbloc/orb] instance (multiple instances may be running for redundancy scalability)

	Document database (AWS DocumentDB [https://aws.amazon.com/documentdb/] or MongoDB [https://www.mongodb.com/])

	AMQP message broker (RabbitMQ [https://www.rabbitmq.com])

	Key Management Service (Aries KMS)

	Verifiable Credential Transparency (VCT) (Google Trillian [https://github.com/google/trillian])

	IPFS [https://ipfs.io/] (optional)

[image: ../_images/nodes.svg]

Components

The diagram below displays the components that make up the Orb server.

[image: ../_images/components.svg]The section below describes a typical DID creation flow that gives an overview of the component interactions.
More detailed descriptions are provided in the various sections of this document.

DID Creation Flow

Creation and resolution of DIDs involve two REST endpoints: Operation Writer and
DID Resolver. The Operation Writer endpoint accepts Sidetree operations to create,
update, deactivate and recover DIDs. The DID Resolver endpoint reads the Sidetree operations for a DID suffix and
returns a DID document.

When an operation is posted to the Operation Writer, a message is posted to the AMQP operation queue which is
consumed by the Batch Writer. The Batch Writer stores the operation and cuts a
batch when the maximum batch size is reached, or the batch times out.
The batch contains the DID operations that were posted since the last batch was cut. The batch is written to
the Content Addressable Storage (CAS) (which can be in a local storage or
IPFS) and an anchor linkset [https://trustbloc.github.io/activityanchors/#anchorevent] is created. The anchor linkset
contains the DIDs from the batch and a verifiable credential containing a proof from the local server. The verifiable
credential is added to the local VCT. An AnchorEvent [https://trustbloc.github.io/activityanchors/#anchorevent]
(which wraps the linkset) is created and posted via an Offer activity to the
Outbox. The Offer activity is stored in the Activities database and an HTTP request
(signed by KMS) is sent to the Inbox of
one or more Orb servers in the witnesses collection.

Proofs from witnessing servers are received in the Inbox as Accept
activities. After the Inbox verifies the HTTP signature of the request,
the Accept activity is stored in the Activities database and the
proof is sent to the Witness Proof Handler. When this handler determines
that enough proofs have been received (according to the Witness Policy),
a new anchor linkset [https://trustbloc.github.io/activityanchors/#anchorevent] is constructed with the gathered
proofs. The anchor linkset is written to CAS and the hash of the anchor linkset is posted to the anchor queue for
processing.

The Observer consumes the anchor linkset hash from the queue and reads the anchor linkset
(along with the corresponding Sidetree operations) from CAS, and processes/stores each operation to the operations
database.

A client sends a request to the DID Resolver endpoint to retrieve the DID document for
the created/updated operation. The DID Resolver retrieves all operations related to the provided DID suffix
from the Operations database, applies the operations, and returns the DID document.

Getting Started Tutorial

In this tutorial you’ll start up two stand-alone Orb nodes (with in-memory database and message queue)
and create, update and resolve DIDs. Further in the tutorial you’ll start up the Orb nodes along with a
VCT node, and you’ll verify that the proofs
in an anchor linkset are in the VCT log.

Setup

Install Docker Desktop from here [https://docs.docker.com/get-docker/].

Clone the orb project:

git clone git@github.com:trustbloc/orb.git

Build Orb and the CLI:

cd orb

make clean orb-docker build-orb-cli-binaries extract-orb-cli-binaries

Orb with no VCT

Start two Orb instances (orb1.local and orb2.local) and a command-line container:

cd orb/samples/tutorial

docker-compose -f docker-compose-cli.yml -f ../docker/docker-compose-dev.yml up&

In another terminal, open an interactive Docker shell:

docker exec -ti cli /bin/bash

cd ./orb

Query non-existing DID:

orb-cli did resolve --did-uri=did:orb:http:orb1.local:uAAA:EiBFejklGvpC6hn--gZEoiDnEaeineV8xP7p0AcH1-N33A --verify-resolution-result-type=all

Response:

Error: failed to resolve did: failed to resolve did: DID does not exist
 [orb-cli] 2022/05/24 16:06:31 UTC - main.main -> CRITICAL Failed to run orb-cli: failed to resolve did: failed to resolve did: DID does not exist

Create a DID at orb1:

orb-cli did create --domain=http://orb1.local --publickey-file=./create_publickeys.json --service-file=./create_services.json --recoverykey-file=./recover_publickey.pem --updatekey-file=./update_publickey.pem --did-anchor-origin=http://orb1.local | jq

Response:

{
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "verificationMethod": [
 {
 "controller": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "id": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key1",
 "publicKeyBase58": "BzcCdRP41BvfyYUq2aC5U5RXdp4zXjYfduubF6EuE79R",
 "type": "Ed25519VerificationKey2018"
 },
 {
 "controller": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "id": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key2",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y": "PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
 },
 "type": "JsonWebKey2020"
 }
],
 "service": [
 {
 "id": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#svc1",
 "priority": 1,
 "recipientKeys": [
 "key1"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key1"
],
 "uri": "https://example.com"
 }
],
 "type": "type1"
 },
 {
 "id": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#svc2",
 "priority": 2,
 "recipientKeys": [
 "key2"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key2"
],
 "uri": "https://example.com"
 }
],
 "type": "type2"
 }
],
 "authentication": [
 "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key1",
 "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key2"
]
}

Resolve the un-anchored DID at orb1:

NOTE: Set DID_SUFFIX to the DID suffix in the id field of the did create response. For example,
did:orb:uAAA:EiDEfq8bA3CqrN3_s76O5uPhm3cGnV3D7oNloVvHfHTg3w.

export DID_SUFFIX=EiDEfq8bA3CqrN3_s76O5uPhm3cGnV3D7oNloVvHfHTg3w

orb-cli did resolve --domain=http://orb1.local --did-uri=did:orb:uAAA:${DID_SUFFIX} --verify-resolution-result-type=all | jq

Response:

{
 "@context": [
 "https://w3id.org/did-resolution/v1"
],
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "verificationMethod": [
 {
 "controller": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "id": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key1",
 "publicKeyBase58": "BzcCdRP41BvfyYUq2aC5U5RXdp4zXjYfduubF6EuE79R",
 "type": "Ed25519VerificationKey2018"
 },
 {
 "controller": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "id": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key2",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y": "PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
 },
 "type": "JsonWebKey2020"
 }
],
 "service": [
 {
 "id": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#svc1",
 "priority": 1,
 "recipientKeys": [
 "key1"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key1"
],
 "uri": "https://example.com"
 }
],
 "type": "type1"
 },
 {
 "id": "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#svc2",
 "priority": 2,
 "recipientKeys": [
 "key2"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key2"
],
 "uri": "https://example.com"
 }
],
 "type": "type2"
 }
],
 "authentication": [
 "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key1",
 "did:orb:uAAA:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key2"
]
 },
 "didDocumentMetadata": {
 "versionId": "uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g",
 "canonicalId": "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "equivalentId": [
 "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "did:orb:hl:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1vaDg2ZlFwOEZXT05NdmpSYXNyOGxpQzU1NE4tbzJfMGVsdGxkUFl5NGc:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA"
],
 "method": {
 "updateCommitment": "EiDsq7uyQDTYJss8JAV68EcVb1sJHXgUl8knESbzvN4RWw",
 "recoveryCommitment": "EiAVtjXx-WHYfWcAzzgbHdcADhF1KVSzpy5Tb_xnu1cbzA",
 "published": true,
 "anchorOrigin": "http://orb1.local",
 "publishedOperations": [
 {
 "operation": "eyJkZWx0YSI6eyJwYXRjaGVzIjpbeyJhY3Rpb24iOiJhZGQtc2VydmljZXMiLCJzZXJ2aWNlcyI6W3siaWQiOiJzdmMxIiwicHJpb3JpdHkiOjEsInJlY2lwaWVudEtleXMiOlsia2V5MSJdLCJzZXJ2aWNlRW5kcG9pbnQiOlt7InJvdXRpbmdLZXlzIjpbImtleTEiXSwidXJpIjoiaHR0cHM6Ly9leGFtcGxlLmNvbSJ9XSwidHlwZSI6InR5cGUxIn0seyJpZCI6InN2YzIiLCJwcmlvcml0eSI6MiwicmVjaXBpZW50S2V5cyI6WyJrZXkyIl0sInNlcnZpY2VFbmRwb2ludCI6W3sicm91dGluZ0tleXMiOlsia2V5MiJdLCJ1cmkiOiJodHRwczovL2V4YW1wbGUuY29tIn1dLCJ0eXBlIjoidHlwZTIifV19LHsiYWN0aW9uIjoiYWRkLXB1YmxpYy1rZXlzIiwicHVibGljS2V5cyI6W3siaWQiOiJrZXkxIiwicHVibGljS2V5SndrIjp7ImNydiI6IkVkMjU1MTkiLCJrdHkiOiJPS1AiLCJ4IjoibzFiRzFVN0czQ05idEFMTWFmVWlGT3E4T0RyYVR5VlRtUHRSRE8xUVVXZyJ9LCJwdXJwb3NlcyI6WyJhdXRoZW50aWNhdGlvbiJdLCJ0eXBlIjoiRWQyNTUxOVZlcmlmaWNhdGlvbktleTIwMTgifSx7ImlkIjoia2V5MiIsInB1YmxpY0tleUp3ayI6eyJjcnYiOiJQLTI1NiIsImt0eSI6IkVDIiwieCI6ImJHTTlhTnVmcEtOUHhsa3lhY1UxaEdoUVhtX2FDOGhJelNWZUtEcHdqQnciLCJ5IjoiUGZkbUNPdElkVlkyQjZ1Y1I0b1FrdDZldlFkZFloT3lIb0RZQ2FJMkJKQSJ9LCJwdXJwb3NlcyI6WyJhdXRoZW50aWNhdGlvbiJdLCJ0eXBlIjoiSnNvbldlYktleTIwMjAifV19XSwidXBkYXRlQ29tbWl0bWVudCI6IkVpRHNxN3V5UURUWUpzczhKQVY2OEVjVmIxc0pIWGdVbDhrbkVTYnp2TjRSV3cifSwic3VmZml4RGF0YSI6eyJhbmNob3JPcmlnaW4iOiJodHRwOi8vb3JiMS5sb2NhbCIsImRlbHRhSGFzaCI6IkVpQzYyTkZQNTJJeXBpbGFnQ3FtdTJaQnRUd1ZBOGdYM003cGlQeW9UcURNOXciLCJyZWNvdmVyeUNvbW1pdG1lbnQiOiJFaUFWdGpYeC1XSFlmV2NBenpnYkhkY0FEaEYxS1ZTenB5NVRiX3hudTFjYnpBIn0sInR5cGUiOiJjcmVhdGUifQ==",
 "transactionTime": 1655130057,
 "type": "create",
 "anchorOrigin": "http://orb1.local",
 "canonicalReference": "uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g",
 "equivalentReferences": [
 "hl:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1vaDg2ZlFwOEZXT05NdmpSYXNyOGxpQzU1NE4tbzJfMGVsdGxkUFl5NGc"
]
 }
]
 }
 }
}

Get the hash of the anchor from the resolve response (from the canonicalId field in the metadata) and set the ANCHOR_HASH environment variable.
For example did:orb:uEiB_V_lRcrutfhF2LvEIvRqsR2uO4j_1nbx6T6X-pUZQPQ:EiDEfq8bA3CqrN3_s76O5uPhm3cGnV3D7oNloVvHfHTg3w:

export ANCHOR_HASH=uEiB_V_lRcrutfhF2LvEIvRqsR2uO4j_1nbx6T6X-pUZQPQ

Resolve the canonical DID at orb1:

orb-cli did resolve --domain=http://orb1.local --did-uri=did:orb:${ANCHOR_HASH}:${DID_SUFFIX} --verify-resolution-result-type=all | jq

Response:

{
 "@context": [
 "https://w3id.org/did-resolution/v1"
],
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id": "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "verificationMethod": [
 {
 "controller": "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "id": "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key1",
 "publicKeyBase58": "BzcCdRP41BvfyYUq2aC5U5RXdp4zXjYfduubF6EuE79R",
 "type": "Ed25519VerificationKey2018"
 },
 {
 "controller": "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "id": "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key2",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y": "PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
 },
 "type": "JsonWebKey2020"
 }
],
 "service": [
 {
 "id": "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#svc1",
 "priority": 1,
 "recipientKeys": [
 "key1"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key1"
],
 "uri": "https://example.com"
 }
],
 "type": "type1"
 },
 {
 "id": "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#svc2",
 "priority": 2,
 "recipientKeys": [
 "key2"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key2"
],
 "uri": "https://example.com"
 }
],
 "type": "type2"
 }
],
 "authentication": [
 "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key1",
 "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA#key2"
]
 },
 "didDocumentMetadata": {
 "versionId": "uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g",
 "canonicalId": "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "equivalentId": [
 "did:orb:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA",
 "did:orb:hl:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1vaDg2ZlFwOEZXT05NdmpSYXNyOGxpQzU1NE4tbzJfMGVsdGxkUFl5NGc:EiBqyfvEMLPdGl7tADKOMV6uP2ub3PW0RemzFrMAulDxWA"
],
 "method": {
 "updateCommitment": "EiDsq7uyQDTYJss8JAV68EcVb1sJHXgUl8knESbzvN4RWw",
 "recoveryCommitment": "EiAVtjXx-WHYfWcAzzgbHdcADhF1KVSzpy5Tb_xnu1cbzA",
 "published": true,
 "anchorOrigin": "http://orb1.local",
 "publishedOperations": [
 {
 "operation": "eyJkZWx0YSI6eyJwYXRjaGVzIjpbeyJhY3Rpb24iOiJhZGQtc2VydmljZXMiLCJzZXJ2aWNlcyI6W3siaWQiOiJzdmMxIiwicHJpb3JpdHkiOjEsInJlY2lwaWVudEtleXMiOlsia2V5MSJdLCJzZXJ2aWNlRW5kcG9pbnQiOlt7InJvdXRpbmdLZXlzIjpbImtleTEiXSwidXJpIjoiaHR0cHM6Ly9leGFtcGxlLmNvbSJ9XSwidHlwZSI6InR5cGUxIn0seyJpZCI6InN2YzIiLCJwcmlvcml0eSI6MiwicmVjaXBpZW50S2V5cyI6WyJrZXkyIl0sInNlcnZpY2VFbmRwb2ludCI6W3sicm91dGluZ0tleXMiOlsia2V5MiJdLCJ1cmkiOiJodHRwczovL2V4YW1wbGUuY29tIn1dLCJ0eXBlIjoidHlwZTIifV19LHsiYWN0aW9uIjoiYWRkLXB1YmxpYy1rZXlzIiwicHVibGljS2V5cyI6W3siaWQiOiJrZXkxIiwicHVibGljS2V5SndrIjp7ImNydiI6IkVkMjU1MTkiLCJrdHkiOiJPS1AiLCJ4IjoibzFiRzFVN0czQ05idEFMTWFmVWlGT3E4T0RyYVR5VlRtUHRSRE8xUVVXZyJ9LCJwdXJwb3NlcyI6WyJhdXRoZW50aWNhdGlvbiJdLCJ0eXBlIjoiRWQyNTUxOVZlcmlmaWNhdGlvbktleTIwMTgifSx7ImlkIjoia2V5MiIsInB1YmxpY0tleUp3ayI6eyJjcnYiOiJQLTI1NiIsImt0eSI6IkVDIiwieCI6ImJHTTlhTnVmcEtOUHhsa3lhY1UxaEdoUVhtX2FDOGhJelNWZUtEcHdqQnciLCJ5IjoiUGZkbUNPdElkVlkyQjZ1Y1I0b1FrdDZldlFkZFloT3lIb0RZQ2FJMkJKQSJ9LCJwdXJwb3NlcyI6WyJhdXRoZW50aWNhdGlvbiJdLCJ0eXBlIjoiSnNvbldlYktleTIwMjAifV19XSwidXBkYXRlQ29tbWl0bWVudCI6IkVpRHNxN3V5UURUWUpzczhKQVY2OEVjVmIxc0pIWGdVbDhrbkVTYnp2TjRSV3cifSwic3VmZml4RGF0YSI6eyJhbmNob3JPcmlnaW4iOiJodHRwOi8vb3JiMS5sb2NhbCIsImRlbHRhSGFzaCI6IkVpQzYyTkZQNTJJeXBpbGFnQ3FtdTJaQnRUd1ZBOGdYM003cGlQeW9UcURNOXciLCJyZWNvdmVyeUNvbW1pdG1lbnQiOiJFaUFWdGpYeC1XSFlmV2NBenpnYkhkY0FEaEYxS1ZTenB5NVRiX3hudTFjYnpBIn0sInR5cGUiOiJjcmVhdGUifQ==",
 "transactionTime": 1655130057,
 "type": "create",
 "anchorOrigin": "http://orb1.local",
 "canonicalReference": "uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g",
 "equivalentReferences": [
 "hl:uEiBmoh86fQp8FWONMvjRasr8liC554N-o2_0eltldPYy4g:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1vaDg2ZlFwOEZXT05NdmpSYXNyOGxpQzU1NE4tbzJfMGVsdGxkUFl5NGc"
]
 }
]
 }
 }
}

Resolve the DID at orb2. These should return ‘not found’ since orb2 is not following orb1:

orb-cli did resolve --sidetree-url-resolution=http://orb2.local/sidetree/v1/identifiers --did-uri=did:orb:uAAA:${DID_SUFFIX} --verify-resolution-result-type=all
orb-cli did resolve --sidetree-url-resolution=http://orb2.local/sidetree/v1/identifiers --did-uri=did:orb:${ANCHOR_HASH}:${DID_SUFFIX} --verify-resolution-result-type=all

Response:

Error: failed to resolve did: failed to resolve did: DID does not exist
 [orb-cli] 2022/05/24 16:39:50 UTC - main.main -> CRITICAL Failed to run orb-cli: failed to resolve did: failed to resolve did: DID does not exist

Resolve a discoverable DID at orb2. This should return ‘not found’ but when we wait a while it should be
available at orb2 since replication should have been triggered:

orb-cli did resolve --sidetree-url-resolution=http://orb2.local/sidetree/v1/identifiers --did-uri=did:orb:http:orb1.local:${ANCHOR_HASH}:${DID_SUFFIX} --verify-resolution-result-type=all

Wait a few seconds and resolve the same DID at orb2. This should return the DID document:

orb-cli did resolve --sidetree-url-resolution=http://orb2.local/sidetree/v1/identifiers --did-uri=did:orb:${ANCHOR_HASH}:${DID_SUFFIX} --verify-resolution-result-type=all | jq

Have orb2 be a follower of orb1:

orb-cli follower --outbox-url=http://orb2.local/services/orb/outbox --actor=http://orb2.local/services/orb --to http://orb1.local/services/orb --action=Follow

Response:

success Follow id: "http://orb2.local/services/orb/activities/17a3f004-305a-44b2-84c6-7f5312ab007f"

Query the servers that orb2 is following:

curl -s "http://orb2.local/services/orb/following?page=true&page-num=0" | jq

Response:

{
 "@context": "https://www.w3.org/ns/activitystreams",
 "id": "http://orb2.local/services/orb/following?page=true&page-num=0",
 "items": [
 "http://orb1.local/services/orb"
],
 "totalItems": 1,
 "type": "CollectionPage"
}

Query the servers that are following orb1:

curl -s "http://orb1.local/services/orb/followers?page=true&page-num=0" | jq

Response:

{
 "@context": "https://www.w3.org/ns/activitystreams",
 "id": "http://orb1.local/services/orb/followers?page=true&page-num=0",
 "items": [
 "http://orb2.local/services/orb"
],
 "totalItems": 1,
 "type": "CollectionPage"
}

Create another DID at orb1:

orb-cli did create --domain=http://orb1.local --publickey-file=./create_publickeys.json --service-file=./create_services2.json --recoverykey-file=./recover_publickey.pem --updatekey-file=./update_publickey.pem --did-anchor-origin=http://orb1.local | jq

Response:

{
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id": "did:orb:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "verificationMethod": [
 {
 "controller": "did:orb:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "id": "did:orb:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key1",
 "publicKeyBase58": "BzcCdRP41BvfyYUq2aC5U5RXdp4zXjYfduubF6EuE79R",
 "type": "Ed25519VerificationKey2018"
 },
 {
 "controller": "did:orb:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "id": "did:orb:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key2",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y": "PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
 },
 "type": "JsonWebKey2020"
 }
],
 "service": [
 {
 "id": "did:orb:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#svc3",
 "priority": 1,
 "recipientKeys": [
 "key3"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key3"
],
 "uri": "https://example.com"
 }
],
 "type": "type3"
 }
],
 "authentication": [
 "did:orb:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key1",
 "did:orb:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key2"
]
}

NOTE: Set DID_SUFFIX to the DID suffix in the id field of the did create response. For example,
did:orb:uAAA:EiAEjRECXpwFaqFYwoJT5XuuUTqwigSNrOOlq4sZKlrnJg.

export DID_SUFFIX=EiAEjRECXpwFaqFYwoJT5XuuUTqwigSNrOOlq4sZKlrnJg

orb-cli did resolve --did-uri=did:orb:http:orb1.local:uAAA:${DID_SUFFIX} --verify-resolution-result-type=all | jq

Response:

{
 "@context": [
 "https://w3id.org/did-resolution/v1"
],
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id": "did:orb:http:orb1.local:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "verificationMethod": [
 {
 "controller": "did:orb:http:orb1.local:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "id": "did:orb:http:orb1.local:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key1",
 "publicKeyBase58": "BzcCdRP41BvfyYUq2aC5U5RXdp4zXjYfduubF6EuE79R",
 "type": "Ed25519VerificationKey2018"
 },
 {
 "controller": "did:orb:http:orb1.local:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "id": "did:orb:http:orb1.local:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key2",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y": "PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
 },
 "type": "JsonWebKey2020"
 }
],
 "service": [
 {
 "id": "did:orb:http:orb1.local:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#svc3",
 "priority": 1,
 "recipientKeys": [
 "key3"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key3"
],
 "uri": "https://example.com"
 }
],
 "type": "type3"
 }
],
 "authentication": [
 "did:orb:http:orb1.local:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key1",
 "did:orb:http:orb1.local:uAAA:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key2"
]
 },
 "didDocumentMetadata": {
 "versionId": "uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg",
 "canonicalId": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "equivalentId": [
 "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "did:orb:hl:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1sUTg5LThuamtFc1BBN3FDRFZRZjJqbWFxSXFXcjg2X1RKek5nRHo0aGc:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ"
],
 "method": {
 "updateCommitment": "EiDsq7uyQDTYJss8JAV68EcVb1sJHXgUl8knESbzvN4RWw",
 "recoveryCommitment": "EiAVtjXx-WHYfWcAzzgbHdcADhF1KVSzpy5Tb_xnu1cbzA",
 "published": true,
 "anchorOrigin": "http://orb1.local",
 "publishedOperations": [
 {
 "operation": "eyJkZWx0YSI6eyJwYXRjaGVzIjpbeyJhY3Rpb24iOiJhZGQtcHVibGljLWtleXMiLCJwdWJsaWNLZXlzIjpbeyJpZCI6ImtleTEiLCJwdWJsaWNLZXlKd2siOnsiY3J2IjoiRWQyNTUxOSIsImt0eSI6Ik9LUCIsIngiOiJvMWJHMVU3RzNDTmJ0QUxNYWZVaUZPcThPRHJhVHlWVG1QdFJETzFRVVdnIn0sInB1cnBvc2VzIjpbImF1dGhlbnRpY2F0aW9uIl0sInR5cGUiOiJFZDI1NTE5VmVyaWZpY2F0aW9uS2V5MjAxOCJ9LHsiaWQiOiJrZXkyIiwicHVibGljS2V5SndrIjp7ImNydiI6IlAtMjU2Iiwia3R5IjoiRUMiLCJ4IjoiYkdNOWFOdWZwS05QeGxreWFjVTFoR2hRWG1fYUM4aEl6U1ZlS0Rwd2pCdyIsInkiOiJQZmRtQ090SWRWWTJCNnVjUjRvUWt0NmV2UWRkWWhPeUhvRFlDYUkyQkpBIn0sInB1cnBvc2VzIjpbImF1dGhlbnRpY2F0aW9uIl0sInR5cGUiOiJKc29uV2ViS2V5MjAyMCJ9XX0seyJhY3Rpb24iOiJhZGQtc2VydmljZXMiLCJzZXJ2aWNlcyI6W3siaWQiOiJzdmMzIiwicHJpb3JpdHkiOjEsInJlY2lwaWVudEtleXMiOlsia2V5MyJdLCJzZXJ2aWNlRW5kcG9pbnQiOlt7InJvdXRpbmdLZXlzIjpbImtleTMiXSwidXJpIjoiaHR0cHM6Ly9leGFtcGxlLmNvbSJ9XSwidHlwZSI6InR5cGUzIn1dfV0sInVwZGF0ZUNvbW1pdG1lbnQiOiJFaURzcTd1eVFEVFlKc3M4SkFWNjhFY1ZiMXNKSFhnVWw4a25FU2J6dk40Uld3In0sInN1ZmZpeERhdGEiOnsiYW5jaG9yT3JpZ2luIjoiaHR0cDovL29yYjEubG9jYWwiLCJkZWx0YUhhc2giOiJFaURGMFBmWHFGY3NrTU9ySlhtUDItWGRxQ1NwbmJIMDZIaC1jQ0dzLUx4OGd3IiwicmVjb3ZlcnlDb21taXRtZW50IjoiRWlBVnRqWHgtV0hZZldjQXp6Z2JIZGNBRGhGMUtWU3pweTVUYl94bnUxY2J6QSJ9LCJ0eXBlIjoiY3JlYXRlIn0=",
 "transactionTime": 1655130300,
 "type": "create",
 "anchorOrigin": "http://orb1.local",
 "canonicalReference": "uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg",
 "equivalentReferences": [
 "hl:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1sUTg5LThuamtFc1BBN3FDRFZRZjJqbWFxSXFXcjg2X1RKek5nRHo0aGc"
]
 }
]
 }
 }
}

NOTE: Set ANCHOR_HASH to the anchor hash of the DID in the did resolve response.
For example, did:orb:uEiAISqEWoGwXgKEtx7Hgt1GXJkh0jPpq3w6bZ6_8FIo5nA:EiAEjRECXpwFaqFYwoJT…

export ANCHOR_HASH=uEiAISqEWoGwXgKEtx7Hgt1GXJkh0jPpq3w6bZ6_8FIo5nA

Resolve the canonical DID at orb2:

orb-cli did resolve --domain=http://orb2.local --did-uri=did:orb:${ANCHOR_HASH}:${DID_SUFFIX} --verify-resolution-result-type=all | jq

Response:

{
 "@context": [
 "https://w3id.org/did-resolution/v1"
],
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "verificationMethod": [
 {
 "controller": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "id": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key1",
 "publicKeyBase58": "BzcCdRP41BvfyYUq2aC5U5RXdp4zXjYfduubF6EuE79R",
 "type": "Ed25519VerificationKey2018"
 },
 {
 "controller": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "id": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key2",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y": "PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
 },
 "type": "JsonWebKey2020"
 }
],
 "service": [
 {
 "id": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#svc3",
 "priority": 1,
 "recipientKeys": [
 "key3"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key3"
],
 "uri": "https://example.com"
 }
],
 "type": "type3"
 }
],
 "authentication": [
 "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key1",
 "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key2"
]
 },
 "didDocumentMetadata": {
 "versionId": "uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg",
 "canonicalId": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "equivalentId": [
 "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "did:orb:hl:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1sUTg5LThuamtFc1BBN3FDRFZRZjJqbWFxSXFXcjg2X1RKek5nRHo0aGc:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ"
],
 "method": {
 "updateCommitment": "EiDsq7uyQDTYJss8JAV68EcVb1sJHXgUl8knESbzvN4RWw",
 "recoveryCommitment": "EiAVtjXx-WHYfWcAzzgbHdcADhF1KVSzpy5Tb_xnu1cbzA",
 "published": true,
 "anchorOrigin": "http://orb1.local",
 "publishedOperations": [
 {
 "operation": "eyJkZWx0YSI6eyJwYXRjaGVzIjpbeyJhY3Rpb24iOiJhZGQtcHVibGljLWtleXMiLCJwdWJsaWNLZXlzIjpbeyJpZCI6ImtleTEiLCJwdWJsaWNLZXlKd2siOnsiY3J2IjoiRWQyNTUxOSIsImt0eSI6Ik9LUCIsIngiOiJvMWJHMVU3RzNDTmJ0QUxNYWZVaUZPcThPRHJhVHlWVG1QdFJETzFRVVdnIn0sInB1cnBvc2VzIjpbImF1dGhlbnRpY2F0aW9uIl0sInR5cGUiOiJFZDI1NTE5VmVyaWZpY2F0aW9uS2V5MjAxOCJ9LHsiaWQiOiJrZXkyIiwicHVibGljS2V5SndrIjp7ImNydiI6IlAtMjU2Iiwia3R5IjoiRUMiLCJ4IjoiYkdNOWFOdWZwS05QeGxreWFjVTFoR2hRWG1fYUM4aEl6U1ZlS0Rwd2pCdyIsInkiOiJQZmRtQ090SWRWWTJCNnVjUjRvUWt0NmV2UWRkWWhPeUhvRFlDYUkyQkpBIn0sInB1cnBvc2VzIjpbImF1dGhlbnRpY2F0aW9uIl0sInR5cGUiOiJKc29uV2ViS2V5MjAyMCJ9XX0seyJhY3Rpb24iOiJhZGQtc2VydmljZXMiLCJzZXJ2aWNlcyI6W3siaWQiOiJzdmMzIiwicHJpb3JpdHkiOjEsInJlY2lwaWVudEtleXMiOlsia2V5MyJdLCJzZXJ2aWNlRW5kcG9pbnQiOlt7InJvdXRpbmdLZXlzIjpbImtleTMiXSwidXJpIjoiaHR0cHM6Ly9leGFtcGxlLmNvbSJ9XSwidHlwZSI6InR5cGUzIn1dfV0sInVwZGF0ZUNvbW1pdG1lbnQiOiJFaURzcTd1eVFEVFlKc3M4SkFWNjhFY1ZiMXNKSFhnVWw4a25FU2J6dk40Uld3In0sInN1ZmZpeERhdGEiOnsiYW5jaG9yT3JpZ2luIjoiaHR0cDovL29yYjEubG9jYWwiLCJkZWx0YUhhc2giOiJFaURGMFBmWHFGY3NrTU9ySlhtUDItWGRxQ1NwbmJIMDZIaC1jQ0dzLUx4OGd3IiwicmVjb3ZlcnlDb21taXRtZW50IjoiRWlBVnRqWHgtV0hZZldjQXp6Z2JIZGNBRGhGMUtWU3pweTVUYl94bnUxY2J6QSJ9LCJ0eXBlIjoiY3JlYXRlIn0=",
 "transactionTime": 1655130300,
 "type": "create",
 "anchorOrigin": "http://orb1.local",
 "canonicalReference": "uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg",
 "equivalentReferences": [
 "hl:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1sUTg5LThuamtFc1BBN3FDRFZRZjJqbWFxSXFXcjg2X1RKek5nRHo0aGc"
]
 }
]
 }
 }
}

Look at orb2’s inbox:

curl -s "http://orb2.local/services/orb/inbox?page=true&page-num=0" | jq

{
 "@context": "https://www.w3.org/ns/activitystreams",
 "id": "http://orb2.local/services/orb/inbox?page=true&page-num=0",
 "orderedItems": [
 {
 "@context": "https://www.w3.org/ns/activitystreams",
 "actor": "http://orb1.local/services/orb",
 "id": "http://orb1.local/services/orb/activities/e9b5b0c0-85dc-4f24-8077-64c846b0578b",
 "object": {
 "@context": "https://www.w3.org/ns/activitystreams",
 "actor": "http://orb2.local/services/orb",
 "id": "http://orb2.local/services/orb/activities/eab55426-ddc8-42b3-98c9-9011a3e46199",
 "object": "http://orb1.local/services/orb",
 "to": "http://orb1.local/services/orb",
 "type": "Follow"
 },
 "to": "http://orb2.local/services/orb",
 "type": "Accept"
 },
 {
 "@context": "https://www.w3.org/ns/activitystreams",
 "actor": "http://orb1.local/services/orb",
 "id": "http://orb1.local/services/orb/activities/217b2908-f605-4c6f-b483-6359e1db3398",
 "object": {
 "@context": "https://w3id.org/activityanchors/v1",
 "object": {
 "linkset": [
 {
 "anchor": "hl:uEiC7l-eOSKfFgvBAj8P5tDS8uJLMgqyP5FuDT_8lRs7xZQ",
 "author": [
 {
 "href": "http://orb1.local/services/orb"
 }
],
 "original": [
 {
 "href": "data:application/gzip;base64,H4sIAAAAAAAA/1yOzU7CQBRG3+W6BQZSEJ3dGEABJRITjCFdTDsDvTBwYX46QNN3N2Vl3H7JOd+pwOBx77QHvq5AHvOCLHAoDA9jFH192e2y4Uj0g00cPl1+vl+S5I0UXqfD3rPan9vbrJSz7iBCC2Twd3pdQWH1ptF4f+KMkc16HUO5NMxpW2KuXbNBnbYAvT78RRQqTjbjQQjBxzh6XcZAh8G5WExuXzOaTxdS+/fy0eDkqsRKxAmtbp/zj/Yy3n0nSxs0+n+F44zFBFWH7Lb5fii7UKd1Wv8GAAD///xpexUBAQAA",
 "type": "application/linkset+json"
 }
],
 "profile": [
 {
 "href": "https://w3id.org/orb#v0"
 }
],
 "related": [
 {
 "href": "data:application/gzip;base64,H4sIAAAAAAAA/1TNTW+CMACA4f/SXXUqlYDc/MApGyiIH7iYhdoKLY3FAgU1/Pdl3nZ/87xPwOk1K0gJrO8niK/nVEhggZRblU2nBu+S1ebzMk/UZMzMtV7ONmblfLnJ7b7W59Us/DF5UBjN0QcdkEtxoZy8pFSSy59Tlnlh9Xo1pPhdyKQnJHpTfdCeOkDR+F/6Wo6HpGEMGbPxsJKwoGYT7ScQLgSm96UxGOHs1k2Qip2+XluV8LsTYu8EXgT1ipoKQYe6G71Ampei6YhFB1fh7S73w4CTj/wWMWz7YTA4M+8Rh+lwv8NT9+EtkRbkZJtBN+RZDO3yqDlatBW1dziD9tSe2t8AAAD//48HdpUnAQAA",
 "type": "application/linkset+json"
 }
],
 "replies": [
 {
 "href": "data:application/gzip;base64,H4sIAAAAAAAA/4ySXXObPBSE/8vJLRgQn+bqtY0zftO49VdsJ51MR0gCCwg4kgA7mfz3DklqZzpNp7fS7uo5R/sM/5GqVOygIPwOO6X2MjSMtm17rd2rRGog0woMIhhlpeK4kEZjgXYW2py+yjBRvOHqiEuyq8RnKslILbg6GrLmikkja6WOTGT+o5xR5LpW/2S51+BMtqzjjBEF4TO8QUAIuyKsx3zgsEOWxX40cGphSx4cbjdD255UlB//960+zR/1NG7wlem2HYZgyck78gudfVt+SS7TZjjIgpmromVQX11P08fjzL2so9WPoFhI/3A3Bw32okp4wTr778NUIr5oTNBAsAJCKHiZS6ZAA3Xcs275g1fqa17mcP+iAafvKaHRea1eURFcGA0xnBihwLQS3UVerDu47+gYUaQnno2RRYOYkj5owKWscUlYhFUHhEyEdDPQkbeyvNB2Qifo2Z4ZeA6y797lTPzpzbe5qqRbLREMK0Y/z+u7qG+5XSCtHjAv/xY4q8W+kh0clpIJxatyytSuor8Ea1zU3fWT46+vM4JXfLK6XOVB5q9anK2z9OjNN+3G5dtR5VKlUDsJHlMcIGvnr+10lm0fHLUYXaEcJUufBxEZbg53Ods02c1tvqqj0/ph/NatJU9LrGrBuo6BBg0TPOEEf2ALgXIatiwOzxNdjCdfJ3xr3ZIbPJ16C3MYRdZ467V8saebqX8zmT+xeh1Lcz6Fl/Ofr1/jcVyw0anIoL1X4cPR/cvPAAAA//+M9CZ8qQMAAA==",
 "type": "application/ld+json"
 }
]
 }
]
 },
 "type": "AnchorEvent",
 "url": "hl:uEiAEtDeVURdVG6-0vyyyaQERtMrwr8-7PbKqv-JIjZuBKg:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQUV0RGVWVVJkVkc2LTB2eXl5YVFFUnRNcndyOC03UGJLcXYtSklqWnVCS2c"
 },
 "published": "2022-06-13T14:25:00.0312114Z",
 "to": [
 "http://orb1.local/services/orb/followers",
 "https://www.w3.org/ns/activitystreams#Public"
],
 "type": "Create"
 }
],
 "totalItems": 2,
 "type": "OrderedCollectionPage"
}

Update the DID:

orb-cli did update --domain=http://orb1.local --did-uri=did:orb:${ANCHOR_HASH}:${DID_SUFFIX} --add-publickey-file=./update_publickeys.json --signingkey-file=./update_privatekey.pem --nextupdatekey-file=./nextupdate_publickey.pem --tls-systemcertpool=true

Response:

successfully updated DID did:orb:uEiAISqEWoGwXgKEtx7Hgt1GXJkh0jPpq3w6bZ6_8FIo5nA:EiAEjRECXpwFaqFYwoJT5XuuUTqwigSNrOOlq4sZKlrnJgroot@af0b0d3c551a

Resolve the DID on orb1:

orb-cli did resolve --domain=http://orb1.local --did-uri=did:orb:${ANCHOR_HASH}:${DID_SUFFIX} --verify-resolution-result-type=all | jq

Response:

{
 "@context": [
 "https://w3id.org/did-resolution/v1"
],
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "verificationMethod": [
 {
 "controller": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "id": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key3",
 "publicKeyBase58": "BzcCdRP41BvfyYUq2aC5U5RXdp4zXjYfduubF6EuE79R",
 "type": "Ed25519VerificationKey2018"
 },
 {
 "controller": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "id": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key4",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y": "PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
 },
 "type": "JsonWebKey2020"
 }
],
 "authentication": [
 "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key3",
 "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key4"
]
 },
 "didDocumentMetadata": {
 "versionId": "uEiD6XU_tO_8n1PmJneefWZlmoHVFG8huAZZeLP3xTX7kYg",
 "canonicalId": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "equivalentId": [
 "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "did:orb:hl:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1sUTg5LThuamtFc1BBN3FDRFZRZjJqbWFxSXFXcjg2X1RKek5nRHo0aGc:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ"
],
 "method": {
 "updateCommitment": "EiAVtjXx-WHYfWcAzzgbHdcADhF1KVSzpy5Tb_xnu1cbzA",
 "recoveryCommitment": "EiAVtjXx-WHYfWcAzzgbHdcADhF1KVSzpy5Tb_xnu1cbzA",
 "published": true,
 "anchorOrigin": "http://orb1.local",
 "publishedOperations": [
 {
 "operation": "eyJkZWx0YSI6eyJwYXRjaGVzIjpbeyJhY3Rpb24iOiJhZGQtcHVibGljLWtleXMiLCJwdWJsaWNLZXlzIjpbeyJpZCI6ImtleTEiLCJwdWJsaWNLZXlKd2siOnsiY3J2IjoiRWQyNTUxOSIsImt0eSI6Ik9LUCIsIngiOiJvMWJHMVU3RzNDTmJ0QUxNYWZVaUZPcThPRHJhVHlWVG1QdFJETzFRVVdnIn0sInB1cnBvc2VzIjpbImF1dGhlbnRpY2F0aW9uIl0sInR5cGUiOiJFZDI1NTE5VmVyaWZpY2F0aW9uS2V5MjAxOCJ9LHsiaWQiOiJrZXkyIiwicHVibGljS2V5SndrIjp7ImNydiI6IlAtMjU2Iiwia3R5IjoiRUMiLCJ4IjoiYkdNOWFOdWZwS05QeGxreWFjVTFoR2hRWG1fYUM4aEl6U1ZlS0Rwd2pCdyIsInkiOiJQZmRtQ090SWRWWTJCNnVjUjRvUWt0NmV2UWRkWWhPeUhvRFlDYUkyQkpBIn0sInB1cnBvc2VzIjpbImF1dGhlbnRpY2F0aW9uIl0sInR5cGUiOiJKc29uV2ViS2V5MjAyMCJ9XX0seyJhY3Rpb24iOiJhZGQtc2VydmljZXMiLCJzZXJ2aWNlcyI6W3siaWQiOiJzdmMzIiwicHJpb3JpdHkiOjEsInJlY2lwaWVudEtleXMiOlsia2V5MyJdLCJzZXJ2aWNlRW5kcG9pbnQiOlt7InJvdXRpbmdLZXlzIjpbImtleTMiXSwidXJpIjoiaHR0cHM6Ly9leGFtcGxlLmNvbSJ9XSwidHlwZSI6InR5cGUzIn1dfV0sInVwZGF0ZUNvbW1pdG1lbnQiOiJFaURzcTd1eVFEVFlKc3M4SkFWNjhFY1ZiMXNKSFhnVWw4a25FU2J6dk40Uld3In0sInN1ZmZpeERhdGEiOnsiYW5jaG9yT3JpZ2luIjoiaHR0cDovL29yYjEubG9jYWwiLCJkZWx0YUhhc2giOiJFaURGMFBmWHFGY3NrTU9ySlhtUDItWGRxQ1NwbmJIMDZIaC1jQ0dzLUx4OGd3IiwicmVjb3ZlcnlDb21taXRtZW50IjoiRWlBVnRqWHgtV0hZZldjQXp6Z2JIZGNBRGhGMUtWU3pweTVUYl94bnUxY2J6QSJ9LCJ0eXBlIjoiY3JlYXRlIn0=",
 "transactionTime": 1655130300,
 "type": "create",
 "anchorOrigin": "http://orb1.local",
 "canonicalReference": "uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg",
 "equivalentReferences": [
 "hl:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1sUTg5LThuamtFc1BBN3FDRFZRZjJqbWFxSXFXcjg2X1RKek5nRHo0aGc"
]
 },
 {
 "operation": "eyJkZWx0YSI6eyJwYXRjaGVzIjpbeyJhY3Rpb24iOiJyZW1vdmUtcHVibGljLWtleXMiLCJpZHMiOlsia2V5MSIsImtleTIiXX0seyJhY3Rpb24iOiJyZW1vdmUtc2VydmljZXMiLCJpZHMiOlsic3ZjMyJdfSx7ImFjdGlvbiI6ImFkZC1wdWJsaWMta2V5cyIsInB1YmxpY0tleXMiOlt7ImlkIjoia2V5MyIsInB1YmxpY0tleUp3ayI6eyJjcnYiOiJFZDI1NTE5Iiwia3R5IjoiT0tQIiwieCI6Im8xYkcxVTdHM0NOYnRBTE1hZlVpRk9xOE9EcmFUeVZUbVB0UkRPMVFVV2cifSwicHVycG9zZXMiOlsiYXV0aGVudGljYXRpb24iXSwidHlwZSI6IkVkMjU1MTlWZXJpZmljYXRpb25LZXkyMDE4In0seyJpZCI6ImtleTQiLCJwdWJsaWNLZXlKd2siOnsiY3J2IjoiUC0yNTYiLCJrdHkiOiJFQyIsIngiOiJiR005YU51ZnBLTlB4bGt5YWNVMWhHaFFYbV9hQzhoSXpTVmVLRHB3akJ3IiwieSI6IlBmZG1DT3RJZFZZMkI2dWNSNG9Ra3Q2ZXZRZGRZaE95SG9EWUNhSTJCSkEifSwicHVycG9zZXMiOlsiYXV0aGVudGljYXRpb24iXSwidHlwZSI6Ikpzb25XZWJLZXkyMDIwIn1dfV0sInVwZGF0ZUNvbW1pdG1lbnQiOiJFaUFWdGpYeC1XSFlmV2NBenpnYkhkY0FEaEYxS1ZTenB5NVRiX3hudTFjYnpBIn0sImRpZFN1ZmZpeCI6IkVpRFpxRnFzNFJ6bHdBYmtPUWh1YWJxQTZRRDBLU1RrYW5CR2N4ZGZiRlE1aFEiLCJyZXZlYWxWYWx1ZSI6IkVpREZiaFZsZk5Qb3FFS3N4Ul9LRW1PdzJjYlZHcGtvcnFxWnRER0FnU3kwdmciLCJzaWduZWREYXRhIjoiZXlKaGJHY2lPaUpGWkVSVFFTSXNJbXRwWkNJNklqQXlOVEUxWVdFMUxUa3laVEV0TkRsbVl5MDVPVGs0TFRZNU5XVXdNakEzWmpBNFpDSjkuZXlKa1pXeDBZVWhoYzJnaU9pSkZhVUZtVUhOUVUzWkNNemM1UlVGTlpWWXpVMjU0WkhGTmVrUmphM28zZG01b1RWSXpXR3c1Ykd0bGJXOW5JaXdpZFhCa1lYUmxTMlY1SWpwN0ltTnlkaUk2SWtWa01qVTFNVGtpTENKcmRIa2lPaUpQUzFBaUxDSjRJam9pTTBaTFJUSnlPVFJNYVZJd1IyWnhWRlJVT1hkMGRFMTVWV1pGVVd0Zk4zbE5kRWN5U2tseGVscDVTU0lzSW5raU9pSWlmWDAuQUYtVUJ5ZWZ4WERwZXFUUkZxTDVlUFhnNk1saWxkN2g4NzNHLUpCbDEtTWoxeTZiY0JmMTVXYWNraVlqWFhDR25CbXpkQUlKSUtNWVBTUHVoSHluRFEiLCJ0eXBlIjoidXBkYXRlIn0=",
 "transactionTime": 1655130434,
 "type": "update",
 "canonicalReference": "uEiD6XU_tO_8n1PmJneefWZlmoHVFG8huAZZeLP3xTX7kYg",
 "equivalentReferences": [
 "hl:uEiD6XU_tO_8n1PmJneefWZlmoHVFG8huAZZeLP3xTX7kYg:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpRDZYVV90T184bjFQbUpuZWVmV1psbW9IVkZHOGh1QVpaZUxQM3hUWDdrWWc"
]
 }
]
 }
 }
}

Resolve the DID on orb2:

orb-cli did resolve --domain=http://orb1.local --did-uri=did:orb:${ANCHOR_HASH}:${DID_SUFFIX} --verify-resolution-result-type=all | jq

Response:

{
 "@context": [
 "https://w3id.org/did-resolution/v1"
],
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "verificationMethod": [
 {
 "controller": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "id": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key3",
 "publicKeyBase58": "BzcCdRP41BvfyYUq2aC5U5RXdp4zXjYfduubF6EuE79R",
 "type": "Ed25519VerificationKey2018"
 },
 {
 "controller": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "id": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key4",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y": "PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
 },
 "type": "JsonWebKey2020"
 }
],
 "authentication": [
 "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key3",
 "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ#key4"
]
 },
 "didDocumentMetadata": {
 "versionId": "uEiD6XU_tO_8n1PmJneefWZlmoHVFG8huAZZeLP3xTX7kYg",
 "canonicalId": "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "equivalentId": [
 "did:orb:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ",
 "did:orb:hl:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1sUTg5LThuamtFc1BBN3FDRFZRZjJqbWFxSXFXcjg2X1RKek5nRHo0aGc:EiDZqFqs4RzlwAbkOQhuabqA6QD0KSTkanBGcxdfbFQ5hQ"
],
 "method": {
 "updateCommitment": "EiAVtjXx-WHYfWcAzzgbHdcADhF1KVSzpy5Tb_xnu1cbzA",
 "recoveryCommitment": "EiAVtjXx-WHYfWcAzzgbHdcADhF1KVSzpy5Tb_xnu1cbzA",
 "published": true,
 "anchorOrigin": "http://orb1.local",
 "publishedOperations": [
 {
 "operation": "eyJkZWx0YSI6eyJwYXRjaGVzIjpbeyJhY3Rpb24iOiJhZGQtcHVibGljLWtleXMiLCJwdWJsaWNLZXlzIjpbeyJpZCI6ImtleTEiLCJwdWJsaWNLZXlKd2siOnsiY3J2IjoiRWQyNTUxOSIsImt0eSI6Ik9LUCIsIngiOiJvMWJHMVU3RzNDTmJ0QUxNYWZVaUZPcThPRHJhVHlWVG1QdFJETzFRVVdnIn0sInB1cnBvc2VzIjpbImF1dGhlbnRpY2F0aW9uIl0sInR5cGUiOiJFZDI1NTE5VmVyaWZpY2F0aW9uS2V5MjAxOCJ9LHsiaWQiOiJrZXkyIiwicHVibGljS2V5SndrIjp7ImNydiI6IlAtMjU2Iiwia3R5IjoiRUMiLCJ4IjoiYkdNOWFOdWZwS05QeGxreWFjVTFoR2hRWG1fYUM4aEl6U1ZlS0Rwd2pCdyIsInkiOiJQZmRtQ090SWRWWTJCNnVjUjRvUWt0NmV2UWRkWWhPeUhvRFlDYUkyQkpBIn0sInB1cnBvc2VzIjpbImF1dGhlbnRpY2F0aW9uIl0sInR5cGUiOiJKc29uV2ViS2V5MjAyMCJ9XX0seyJhY3Rpb24iOiJhZGQtc2VydmljZXMiLCJzZXJ2aWNlcyI6W3siaWQiOiJzdmMzIiwicHJpb3JpdHkiOjEsInJlY2lwaWVudEtleXMiOlsia2V5MyJdLCJzZXJ2aWNlRW5kcG9pbnQiOlt7InJvdXRpbmdLZXlzIjpbImtleTMiXSwidXJpIjoiaHR0cHM6Ly9leGFtcGxlLmNvbSJ9XSwidHlwZSI6InR5cGUzIn1dfV0sInVwZGF0ZUNvbW1pdG1lbnQiOiJFaURzcTd1eVFEVFlKc3M4SkFWNjhFY1ZiMXNKSFhnVWw4a25FU2J6dk40Uld3In0sInN1ZmZpeERhdGEiOnsiYW5jaG9yT3JpZ2luIjoiaHR0cDovL29yYjEubG9jYWwiLCJkZWx0YUhhc2giOiJFaURGMFBmWHFGY3NrTU9ySlhtUDItWGRxQ1NwbmJIMDZIaC1jQ0dzLUx4OGd3IiwicmVjb3ZlcnlDb21taXRtZW50IjoiRWlBVnRqWHgtV0hZZldjQXp6Z2JIZGNBRGhGMUtWU3pweTVUYl94bnUxY2J6QSJ9LCJ0eXBlIjoiY3JlYXRlIn0=",
 "transactionTime": 1655130300,
 "type": "create",
 "anchorOrigin": "http://orb1.local",
 "canonicalReference": "uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg",
 "equivalentReferences": [
 "hl:uEiBmlQ89-8njkEsPA7qCDVQf2jmaqIqWr86_TJzNgDz4hg:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQm1sUTg5LThuamtFc1BBN3FDRFZRZjJqbWFxSXFXcjg2X1RKek5nRHo0aGc"
]
 },
 {
 "operation": "eyJkZWx0YSI6eyJwYXRjaGVzIjpbeyJhY3Rpb24iOiJyZW1vdmUtcHVibGljLWtleXMiLCJpZHMiOlsia2V5MSIsImtleTIiXX0seyJhY3Rpb24iOiJyZW1vdmUtc2VydmljZXMiLCJpZHMiOlsic3ZjMyJdfSx7ImFjdGlvbiI6ImFkZC1wdWJsaWMta2V5cyIsInB1YmxpY0tleXMiOlt7ImlkIjoia2V5MyIsInB1YmxpY0tleUp3ayI6eyJjcnYiOiJFZDI1NTE5Iiwia3R5IjoiT0tQIiwieCI6Im8xYkcxVTdHM0NOYnRBTE1hZlVpRk9xOE9EcmFUeVZUbVB0UkRPMVFVV2cifSwicHVycG9zZXMiOlsiYXV0aGVudGljYXRpb24iXSwidHlwZSI6IkVkMjU1MTlWZXJpZmljYXRpb25LZXkyMDE4In0seyJpZCI6ImtleTQiLCJwdWJsaWNLZXlKd2siOnsiY3J2IjoiUC0yNTYiLCJrdHkiOiJFQyIsIngiOiJiR005YU51ZnBLTlB4bGt5YWNVMWhHaFFYbV9hQzhoSXpTVmVLRHB3akJ3IiwieSI6IlBmZG1DT3RJZFZZMkI2dWNSNG9Ra3Q2ZXZRZGRZaE95SG9EWUNhSTJCSkEifSwicHVycG9zZXMiOlsiYXV0aGVudGljYXRpb24iXSwidHlwZSI6Ikpzb25XZWJLZXkyMDIwIn1dfV0sInVwZGF0ZUNvbW1pdG1lbnQiOiJFaUFWdGpYeC1XSFlmV2NBenpnYkhkY0FEaEYxS1ZTenB5NVRiX3hudTFjYnpBIn0sImRpZFN1ZmZpeCI6IkVpRFpxRnFzNFJ6bHdBYmtPUWh1YWJxQTZRRDBLU1RrYW5CR2N4ZGZiRlE1aFEiLCJyZXZlYWxWYWx1ZSI6IkVpREZiaFZsZk5Qb3FFS3N4Ul9LRW1PdzJjYlZHcGtvcnFxWnRER0FnU3kwdmciLCJzaWduZWREYXRhIjoiZXlKaGJHY2lPaUpGWkVSVFFTSXNJbXRwWkNJNklqQXlOVEUxWVdFMUxUa3laVEV0TkRsbVl5MDVPVGs0TFRZNU5XVXdNakEzWmpBNFpDSjkuZXlKa1pXeDBZVWhoYzJnaU9pSkZhVUZtVUhOUVUzWkNNemM1UlVGTlpWWXpVMjU0WkhGTmVrUmphM28zZG01b1RWSXpXR3c1Ykd0bGJXOW5JaXdpZFhCa1lYUmxTMlY1SWpwN0ltTnlkaUk2SWtWa01qVTFNVGtpTENKcmRIa2lPaUpQUzFBaUxDSjRJam9pTTBaTFJUSnlPVFJNYVZJd1IyWnhWRlJVT1hkMGRFMTVWV1pGVVd0Zk4zbE5kRWN5U2tseGVscDVTU0lzSW5raU9pSWlmWDAuQUYtVUJ5ZWZ4WERwZXFUUkZxTDVlUFhnNk1saWxkN2g4NzNHLUpCbDEtTWoxeTZiY0JmMTVXYWNraVlqWFhDR25CbXpkQUlKSUtNWVBTUHVoSHluRFEiLCJ0eXBlIjoidXBkYXRlIn0=",
 "transactionTime": 1655130434,
 "type": "update",
 "canonicalReference": "uEiD6XU_tO_8n1PmJneefWZlmoHVFG8huAZZeLP3xTX7kYg",
 "equivalentReferences": [
 "hl:uEiD6XU_tO_8n1PmJneefWZlmoHVFG8huAZZeLP3xTX7kYg:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpRDZYVV90T184bjFQbUpuZWVmV1psbW9IVkZHOGh1QVpaZUxQM3hUWDdrWWc"
]
 }
]
 }
 }
}

Shut down the environment:

docker-compose -f docker-compose-cli.yml -f ../docker/docker-compose-dev.yml down

Orb with VCT

Start two Orb instances (orb1.local and orb2.local), VCT
(includes the Google Trillian server and signer) and a command-line container:

cd orb/samples/tutorial

docker-compose -f docker-compose-cli.yml -f ../docker/docker-compose-dev-vct.yml up&

In another terminal, open an interactive Docker shell:

docker exec -ti cli /bin/bash

cd ./orb

Add a VCT log to orb1:

orb-cli log update --url http://orb1.local/log --log http://orb.vct:8077/maple2022

Response:

Domain log has successfully been updated.

Create a DID at orb1:

orb-cli did create --domain=http://orb1.local --publickey-file=./create_publickeys.json --service-file=./create_services.json --recoverykey-file=./recover_publickey.pem --updatekey-file=./update_publickey.pem --did-anchor-origin=http://orb1.local | jq

Response:

{
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA",
 "verificationMethod": [
 {
 "controller": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA",
 "id": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#key1",
 "publicKeyBase58": "BzcCdRP41BvfyYUq2aC5U5RXdp4zXjYfduubF6EuE79R",
 "type": "Ed25519VerificationKey2018"
 },
 {
 "controller": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA",
 "id": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#key2",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y": "PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
 },
 "type": "JsonWebKey2020"
 }
],
 "service": [
 {
 "id": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#svc1",
 "priority": 1,
 "recipientKeys": [
 "key1"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key1"
],
 "uri": "https://example.com"
 }
],
 "type": "type1"
 },
 {
 "id": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#svc2",
 "priority": 2,
 "recipientKeys": [
 "key2"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key2"
],
 "uri": "https://example.com"
 }
],
 "type": "type2"
 }
],
 "authentication": [
 "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#key1",
 "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#key2"
]
}

Resolve the DID at orb1 to get the anchor hash:

NOTE: Set DID_SUFFIX to the DID suffix in the id field of the did create response.
For example, did:orb:uAAA:EiCGIu4PrFTVEZRb8SOZt4nbZRF7Wp2_qX4Zt0czROKHxg.

export DID_SUFFIX=EiCGIu4PrFTVEZRb8SOZt4nbZRF7Wp2_qX4Zt0czROKHxg

orb-cli did resolve --domain=http://orb1.local --did-uri=did:orb:uAAA:${DID_SUFFIX} --verify-resolution-result-type=all | jq

Response:

{
 "@context": [
 "https://w3id.org/did-resolution/v1"
],
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA",
 "verificationMethod": [
 {
 "controller": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA",
 "id": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#key1",
 "publicKeyBase58": "BzcCdRP41BvfyYUq2aC5U5RXdp4zXjYfduubF6EuE79R",
 "type": "Ed25519VerificationKey2018"
 },
 {
 "controller": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA",
 "id": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#key2",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y": "PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
 },
 "type": "JsonWebKey2020"
 }
],
 "service": [
 {
 "id": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#svc1",
 "priority": 1,
 "recipientKeys": [
 "key1"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key1"
],
 "uri": "https://example.com"
 }
],
 "type": "type1"
 },
 {
 "id": "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#svc2",
 "priority": 2,
 "recipientKeys": [
 "key2"
],
 "serviceEndpoint": [
 {
 "routingKeys": [
 "key2"
],
 "uri": "https://example.com"
 }
],
 "type": "type2"
 }
],
 "authentication": [
 "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#key1",
 "did:orb:uAAA:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA#key2"
]
 },
 "didDocumentMetadata": {
 "versionId": "uEiCVI1cESlp5f_H503m_WZn-Zu3jt6f0j1bqc8xE79hRkw",
 "canonicalId": "did:orb:uEiCVI1cESlp5f_H503m_WZn-Zu3jt6f0j1bqc8xE79hRkw:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA",
 "equivalentId": [
 "did:orb:uEiCVI1cESlp5f_H503m_WZn-Zu3jt6f0j1bqc8xE79hRkw:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA",
 "did:orb:hl:uEiCVI1cESlp5f_H503m_WZn-Zu3jt6f0j1bqc8xE79hRkw:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQ1ZJMWNFU2xwNWZfSDUwM21fV1puLVp1M2p0NmYwajFicWM4eEU3OWhSa3c:EiDMMnBARgGo1J7Y6v3p3CFv5Wu5XcNEpQSmisoufLyrVA"
],
 "method": {
 "updateCommitment": "EiDsq7uyQDTYJss8JAV68EcVb1sJHXgUl8knESbzvN4RWw",
 "recoveryCommitment": "EiAVtjXx-WHYfWcAzzgbHdcADhF1KVSzpy5Tb_xnu1cbzA",
 "published": true,
 "anchorOrigin": "http://orb1.local",
 "publishedOperations": [
 {
 "operation": "eyJkZWx0YSI6eyJwYXRjaGVzIjpbeyJhY3Rpb24iOiJhZGQtcHVibGljLWtleXMiLCJwdWJsaWNLZXlzIjpbeyJpZCI6ImtleTEiLCJwdWJsaWNLZXlKd2siOnsiY3J2IjoiRWQyNTUxOSIsImt0eSI6Ik9LUCIsIngiOiJvMWJHMVU3RzNDTmJ0QUxNYWZVaUZPcThPRHJhVHlWVG1QdFJETzFRVVdnIn0sInB1cnBvc2VzIjpbImF1dGhlbnRpY2F0aW9uIl0sInR5cGUiOiJFZDI1NTE5VmVyaWZpY2F0aW9uS2V5MjAxOCJ9LHsiaWQiOiJrZXkyIiwicHVibGljS2V5SndrIjp7ImNydiI6IlAtMjU2Iiwia3R5IjoiRUMiLCJ4IjoiYkdNOWFOdWZwS05QeGxreWFjVTFoR2hRWG1fYUM4aEl6U1ZlS0Rwd2pCdyIsInkiOiJQZmRtQ090SWRWWTJCNnVjUjRvUWt0NmV2UWRkWWhPeUhvRFlDYUkyQkpBIn0sInB1cnBvc2VzIjpbImF1dGhlbnRpY2F0aW9uIl0sInR5cGUiOiJKc29uV2ViS2V5MjAyMCJ9XX0seyJhY3Rpb24iOiJhZGQtc2VydmljZXMiLCJzZXJ2aWNlcyI6W3siaWQiOiJzdmMxIiwicHJpb3JpdHkiOjEsInJlY2lwaWVudEtleXMiOlsia2V5MSJdLCJzZXJ2aWNlRW5kcG9pbnQiOlt7InJvdXRpbmdLZXlzIjpbImtleTEiXSwidXJpIjoiaHR0cHM6Ly9leGFtcGxlLmNvbSJ9XSwidHlwZSI6InR5cGUxIn0seyJpZCI6InN2YzIiLCJwcmlvcml0eSI6MiwicmVjaXBpZW50S2V5cyI6WyJrZXkyIl0sInNlcnZpY2VFbmRwb2ludCI6W3sicm91dGluZ0tleXMiOlsia2V5MiJdLCJ1cmkiOiJodHRwczovL2V4YW1wbGUuY29tIn1dLCJ0eXBlIjoidHlwZTIifV19XSwidXBkYXRlQ29tbWl0bWVudCI6IkVpRHNxN3V5UURUWUpzczhKQVY2OEVjVmIxc0pIWGdVbDhrbkVTYnp2TjRSV3cifSwic3VmZml4RGF0YSI6eyJhbmNob3JPcmlnaW4iOiJodHRwOi8vb3JiMS5sb2NhbCIsImRlbHRhSGFzaCI6IkVpQ1d6RjJHRXBrbnNiR3pXaGpmM01PUWFobGdVRGJuYk5yWWZCTmFoZzV4R0EiLCJyZWNvdmVyeUNvbW1pdG1lbnQiOiJFaUFWdGpYeC1XSFlmV2NBenpnYkhkY0FEaEYxS1ZTenB5NVRiX3hudTFjYnpBIn0sInR5cGUiOiJjcmVhdGUifQ==",
 "transactionTime": 1655130610,
 "type": "create",
 "anchorOrigin": "http://orb1.local",
 "canonicalReference": "uEiCVI1cESlp5f_H503m_WZn-Zu3jt6f0j1bqc8xE79hRkw",
 "equivalentReferences": [
 "hl:uEiCVI1cESlp5f_H503m_WZn-Zu3jt6f0j1bqc8xE79hRkw:uoQ-BeEVodHRwOi8vb3JiMS5sb2NhbC9jYXMvdUVpQ1ZJMWNFU2xwNWZfSDUwM21fV1puLVp1M2p0NmYwajFicWM4eEU3OWhSa3c"
]
 }
]
 }
 }
}

Get hash of anchor from the resolve response (from the canonicalId field in the metadata) and set the ANCHOR_HASH environment variable.
For example, did:orb:uEiBtg3HASdLSUHLYds6givvkjJX_DEb8cqONqpKuq_Y_aA:EiCGIu4PrFTVEZRb8SOZ…

Verify that the proof(s) in the anchor linkset are in the VCT log:

export ANCHOR_HASH=uEiBtg3HASdLSUHLYds6givvkjJX_DEb8cqONqpKuq_Y_aA

orb-cli vct verify --cas-url=http://orb1.local/cas --anchor=${ANCHOR_HASH}

Response:

[
 {
 "domain": "http://orb.vct:8077/maple2022",
 "proofValue": "z5LcS2Aa8zGVwunZKFap9DJZYs3YaRgU2MD5kfMjYyK5oLfBZUZieZBsvkpdqqjUZeZCBJqBQnJ6r6esQUwQXmMhG",
 "found": true,
 "leafIndex": 0,
 "auditPath": null
 }
]

You’ll notice that leafIndex is 0 and auditPath is empty since there’s only one entry in the Merkle tree.

Create another DID at orb1 and use orb-cli vct verify to verify that the proofs are in the log.

[
 {
 "domain": "http://orb.vct:8077/maple2022",
 "proofValue": "JnP2nE4jLiHsmR65q1a6Tp-HUKZanjpCstm7qAljIE3Z6Y2mEcNarOESiu1gFlsonz1soQJe69piE7qZnTqrAw",
 "found": true,
 "leafIndex": 1,
 "auditPath": [
 "rgWgpjyv6227zFbcpyRv3YR1vbLbXaOuCeYoF7uDaY4="
]
 }
]

You’ll now notice that leafIndex is 1 and auditPath has one entry.

Shut down the environment:

docker-compose -f docker-compose-cli.yml -f ../docker/docker-compose-dev-vct.yml down

Client Libraries and Utilities

	Command-Line Interface (CLI)

	Universal Resolver Driver

	Verifiable Data Registry (VDR)

Command-Line Interface (CLI)

The Orb Command Line Interface (Orb CLI) is a unified tool that provides a consistent interface for interacting with all parts of Orb.

Create DID

This command used for creating DID.

Usage

did create [flags]

Flags

	domain [string] - URL to the Orb domain.

	sidetree-url [array|string] - Array of one or more Sidetree URLs.

	sidetree-write-token [string] - The Sidetree write token.

	tls-cacerts [array|string] - Array of one or more CA cert paths.

	tls-systemcertpool [boolean] - Flag whether to use system certificate pool.

	publickey-file [string] - The file contains the DID public keys.

	service-file [string] - The file contains the DID services.

	recoverykey [string] - The public key PEM used for recovery of the document.

	recoverykey-file [string] - The file that contains the public key PEM used for recovery of the document.

	updatekey [string] - The public key PEM used for validating the signature of the next update of the document.

	updatekey-file [string] - The file that contains the public key PEM used for validating the signature of the next update of the document.

Example

create cmd

did create --domain https://orb1.com --publickey-file ./publickeys.json --service-file ./services.json
--recoverykey-file ./keys/recover/public.pem --updatekey-file ./keys/update/public.pem

publickeys.json

[
 {
 "id": "key1",
 "type": "Ed25519VerificationKey2018",
 "purposes": ["authentication"],
 "jwkPath": "./key1_jwk.json"
 },
 {
 "id": "key2",
 "type": "JwsVerificationKey2020",
 "purposes": ["capabilityInvocation"],
 "jwkPath": "./key2_jwk.json"
 }
]

key1_jwk.json

{
 "kty":"OKP",
 "crv":"Ed25519",
 "x":"o1bG1U7G3CNbtALMafUiFOq8ODraTyVTmPtRDO1QUWg",
 "y":""
}

key2_jwk.json

{
 "kty":"EC",
 "crv":"P-256",
 "x":"bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y":"PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
}

services.json

[
 {
 "id": "svc1",
 "type": "type1",
 "priority": 1,
 "routingKeys": ["key1"],
 "recipientKeys": ["key1"],
 "serviceEndpoint": "http://www.example.com"
 },
 {
 "id": "svc2",
 "type": "type2",
 "priority": 2,
 "routingKeys": ["key2"],
 "recipientKeys": ["key2"],
 "serviceEndpoint": "http://www.example.com"
 }
]

Resolve

This command used for resolving DID.

Usage

did resolve [flags]

Flags

	domain [string] - URL to the Orb domain.

	sidetree-url-resolution [array|string] - Array of one or more Sidetree URLs resolution.

	auth-token [string] - The Auth token.

	tls-cacerts [array|string] - Array of one or more CA cert paths.

	tls-systemcertpool [boolean] - Flag whether to use system certificate pool.

	did-uri [string] - DID URI.

	verify-resolution-result-type [string] - Verify resolution result type. Values [all, none, unpublished].

Difference between domain and sidetree-url-resolution

Domain will be used to discover Orb resolution endpoint if you have Orb DID without discovery information. sidetree-url-resolution
will not discover any endpoint and hit the resolution directly.

Example

resolve cmd

did resolve --domain https://orb1.com --did-uri did:orb:3XvwJ:EiDnJwbKHkHdaco4khFeBzvSL1hZ4eBGQq3q1Yjrpi5d4g
--verify-resolution-result-type all

resolve cmd DID with discovery information

did resolve --did-uri did:orb:https:orb1.com:uAAA:EiAFqEsuKDpwbfFxHfqP-TLdFPjqSrFWwgj8_dU64GMcEQ
--verify-resolution-result-type all

Update

This command used for updating DID.

Usage

did update [flags]

Flags

	domain [string] - URL to the Orb domain.

	sidetree-url-operation [array|string] - Array of one or more Sidetree URLs operation.

	sidetree-url-resolution [array|string] - Array of one or more Sidetree URLs resolution.

	sidetree-write-token [string] - The Sidetree write token.

	tls-cacerts [array|string] - Array of one or more CA cert paths.

	tls-systemcertpool [boolean] - Flag whether to use system certificate pool.

	did-uri [string] - DID URI.

	add-publickey-file [string] - The file contains the DID public keys to be added or updated.

	add-service-file [string] - The file contains the DID services to be added or updated.

	nextupdatekey [string] - The public key PEM used for validating the signature of the next update of the document.

	nextupdatekey-file [string] - The file that contains the public key PEM used for validating the signature of the next update of the document.

	signingkey [string] - The private key PEM used for signing the update of the document.

	signingkey-file [string] - The file that contains the private key PEM used for signing the update of the document.

	signingkey-password [string] - The Signing key PEM password.

Example

update cmd

did update --domain https://orb1.com --did-uri did:orb:3XvwJ:EiDnJwbKHkHdaco4khFeBzvSL1hZ4eBGQq3q1Yjrpi5d4g
--add-publickey-file ./publickeys.json --add-service-file ./services.json --signingkey-file ./keys/update/key_encrypted.pem --signingkey-password 123
--nextupdatekey-file ./keys/update2/public.pem

publickeys.json

[
 {
 "id": "key2",
 "type": "JwsVerificationKey2020",
 "purposes": ["capabilityInvocation"],
 "jwkPath": "./key2_jwk.json"
 },
 {
 "id": "key3",
 "type": "Ed25519VerificationKey2018",
 "purposes": ["authentication"],
 "jwkPath": "./key3_jwk.json"
 }
]

key2_jwk.json

{
 "kty":"EC",
 "crv":"P-256",
 "x":"bGM9aNufpKNPxlkyacU1hGhQXm_aC8hIzSVeKDpwjBw",
 "y":"PfdmCOtIdVY2B6ucR4oQkt6evQddYhOyHoDYCaI2BJA"
}

key3_jwk.json

{
 "kty":"OKP",
 "crv":"Ed25519",
 "x":"o1bG1U7G3CNbtALMafUiFOq8ODraTyVTmPtRDO1QUWg",
 "y":""
}

services.json

[
 {
 "id": "svc3",
 "type": "type3",
 "priority": 3,
 "routingKeys": ["key3"],
 "recipientKeys": ["key3"],
 "serviceEndpoint": "http://www.example.com"
 }
]

Recover

This command used for recovering DID.

Usage

did recover [flags]

Flags

	domain [string] - URL to the Orb domain.

	sidetree-url-operation [array|string] - Array of one or more Sidetree URLs operation.

	sidetree-url-resolution [array|string] - Array of one or more Sidetree URLs resolution.

	sidetree-write-token [string] - The Sidetree write token.

	tls-cacerts [array|string] - Array of one or more CA cert paths.

	tls-systemcertpool [boolean] - Flag whether to use system certificate pool.

	did-uri [string] - DID URI.

	publickey-file [string] - The file contains the DID public keys to be recovered.

	service-file [string] - The file contains the DID services to be recovered.

	nextupdatekey [string] - The public key PEM used for validating the signature of the next update of the document.

	nextupdatekey-file [string] - The file that contains the public key PEM used for validating the signature of the next update of the document.

	nextrecoverkey [string] - The public key PEM used for validating the signature of the next recovery of the document.

	nextrecoverkey-file [string] - The file that contains the public key PEM used for validating the signature of the next recovery of the document.

	signingkey [string] - The private key PEM used for signing the recovery of the document.

	signingkey-file [string] - The file that contains the private key PEM used for signing the recovery of the document.

	signingkey-password [string] - The Signing key PEM password.

Example

recover cmd

did recover --domain https://orb1.com --did-uri did:orb:3XvwJ:EiDZTmh3BNBzhwSlOdh3FwAdjzu4BkWly2MoTVNHoNdJpw
--publickey-file ./publickeys.json --service-file ./services.json
--nextrecoverkey-file ./keys/recover2/public.pem --nextupdatekey-file ./keys/update3/public.pem
--signingkey-file ./keys/recover/key_encrypted.pem --signingkey-password 123

publickeys.json

[
 {
 "id": "key-recover-id",
 "type": "Ed25519VerificationKey2018",
 "purposes": ["authentication"],
 "jwkPath": "./fixtures/did-keys/recover/key1_jwk.json"
 }
]

key1_jwk.json

{
 "kty":"OKP",
 "crv":"Ed25519",
 "x":"o1bG1U7G3CNbtALMafUiFOq8ODraTyVTmPtRDO1QUWg",
 "y":""
}

services.json

[
 {
 "id": "svc-recover-id",
 "type": "type1",
 "priority": 1,
 "routingKeys": ["key1"],
 "recipientKeys": ["key1"],
 "serviceEndpoint": "http://www.example.com"
 }
]

Deactivate

This command used for Deactivating DID.

Usage

did deactivate [flags]

Flags

	domain [string] - URL to the Orb domain.

	sidetree-url-operation [array|string] - Array of one or more Sidetree URLs operation.

	sidetree-url-resolution [array|string] - Array of one or more Sidetree URLs resolution.

	sidetree-write-token [string] - The Sidetree write token.

	tls-cacerts [array|string] - Array of one or more CA cert paths.

	tls-systemcertpool [boolean] - Flag whether to use system certificate pool.

	did-uri [string] - DID URI.

	signingkey [string] - The private key PEM used for signing deactivate of the document.

	signingkey-file [string] - The file that contains the private key PEM used for signing deactivate of the document.

	signingkey-password [string] - The Signing key PEM password.

Example

deactivate cmd

deactivate-did --domain https://orb1.com --did-uri did:orb:3XvwJ:EiDnJwbKHkHdaco4khFeBzvSL1hZ4eBGQq3q1Yjrpi5d4g
--signingkey-file ./keys/recover2/key_encrypted.pem --signingkey-password 123

Follow

This command used for manage followers.

Usage

follower [flags]

Flags

	outbox-url [string] - Outbox url.

	actor [string] - Actor IRI.

	to [string] - To IRI.

	action [string] - Follower action (Follow, Undo).

	tls-cacerts [array|string] - Array of one or more CA cert paths.

	tls-systemcertpool [boolean] - Flag whether to use system certificate pool.

	auth-token [string] - Auth token.

	follow-id [string] - Follow id required for undo action.

Example

follow cmd (orb-2 server follows orb-1 server)

follower --outbox-url=https://orb-1.com/services/orb/outbox --actor=https://orb-2/services/orb
--to=https://orb-1/services/orb --action=Follow --auth-token=token123

undo cmd (orb-2 server unfollows orb-1 server)

follower --outbox-url=https://orb-1.com/services/orb/outbox --actor=https://orb-2/services/orb
--to=https://orb-1/services/orb --action=Undo --auth-token=token123 --follow-id=r232DD##

Witness

This command used for manage witness.

Usage

follower [flags]

Flags

	outbox-url [string] - Outbox url.

	actor [string] - Actor IRI.

	to [string] - To IRI.

	action [string] - Follower action (Follow, Undo).

	tls-cacerts [array|string] - Array of one or more CA cert paths.

	tls-systemcertpool [boolean] - Flag whether to use system certificate pool.

	auth-token [string] - Auth token.

	follow-id [string] - Follow id required for undo action.

Example

witness cmd (orb-1 invites orb-2 to be a witness)

witness --outbox-url=https://orb-1.com/services/orb/outbox --actor=https://orb-1.com/services/orb
--to=https://orb-2.com/services/orb --action=InviteWitness --auth-token=token123

undo cmd (orb-1 uninvite orb-2 to be a witness)

witness --outbox-url=https://orb-1.com/services/orb/outbox --actor=https://orb-1.com/services/orb
--to=https://orb-2.com/services/orb --action=InviteWitness --auth-token=token123 --invite-witness-id=r2WW##

Accept List

The acceptlist command adds and removes actors from the follow and witness
accept-lists.

Usage

acceptlist [command] [flags]

Flags

	url [string] - Accept-list endpoint.

	actor [array|string] - Array of one or more actors to add to the accept-list.

	type [string] - Accept-list type - either follow or witness.

Add Command

Adds one or more actors to an accept-list of a given type.

Example

The orb domain, orb-1.com, adds orb-2.com and orb-3.com to the follow accept list:

acceptlist add --url https://orb-1.com/services/orb/acceptlist --actor https://orb-2.com/services/orb --actor https://orb-3.com/services/orb --type follow

Remove Command

Removes one or more actors from an accept-list of a given type:

Example

The orb domain, orb-1.com, removes orb-2.com from the witness accept list:

acceptlist remove --url https://orb-1.com/services/orb/acceptlist --actor https://orb-2.com/services/orb --type witness

Get Command

Retrieves all accept-lists or an accept-list of the given type.

Example

Retrieve orb-1.com’s witness accept-list:

acceptlist get --url https://orb-1.com/services/orb/acceptlist --type witness

Retrieve all of orb-1’s accept-lists:

acceptlist get --url https://orb-1.com/services/orb/acceptlist

Policy

The policy command updates and retrieves the witness policy.

Usage

policy [command] [flags]

Flags

	url [string] - Witness policy endpoint.

	policy [string] - The policy. For example “MinPercent(100,batch) AND OutOf(1,system)”.

Update Command

The update command updates a witness policy.

Example

policy update --url https://orb-1.com/policy --policy "MinPercent(100,batch) AND OutOf(1,system)"

Get Command

The get command retrieves the witness policy.

Example

policy get --url https://orb-1.com/policy

Log

The log command updates and retrieves the VCT log URL.

Usage

log [command] [flags]

Flags

	url [string] - Log endpoint.

	log [string] - The log URL. For example “https://vct.com/log”.

Update Command

The update command updates a log URL.

Example

log update --url https://orb-1.com/log --log https://vct.com/log

Get Command

The get command retrieves the log URL.

Example

log get --url https://orb-1.com/log

Log Monitor

The logmonitor command activates and deactivates log from the list of logs that are observed by log monitoring service.
log-monitor.

Usage

logmonitor [command] [flags]

Flags

	url [string] - Log monitor endpoint.

	log [array|string] - Array of one or more logs to activate for log monitoring.

Activate Command

Adds one or more logs to the list of logs that are monitored by log monitoring service.

Example

logmonitor activate --url https://orb-1.com/log-monitor --url https://vct.com/log --url https://other-vct.com/some-log

Deactivate Command

Removes one or more logs from the list of logs that are monitored by log monitoring service.

Example

logmonitor deactivate --url https://orb-1.com/log-monitor --url https://vct.com/log --url https://other-vct.com/some-log

Get Command

Retrieves all logs of the given status that are observed by monitoring service. Status can be either active or inactive.
If not supplied it defaults to active.

Example

Retrieve orb-1.com’s inactive logs:

logmonitor get --url https://orb-1.com/log-monitor --status inactive

Retrieve all of orb-1’s active logs:

logmonitor get --url https://orb-1.com/log-monitor --status active

VCT

The vct command interacts with the VCT server to verify that an anchor has been added to a log.

Usage

vct [command] [flags]

Flags

	anchor [string] - The hash of the anchor linkset.

	cas-url [string] - The CAS URL.

	vct-auth-token [string] - The authorization bearer token for the VCT server (optional).

Verify Command

The verify command verifies that the anchor linkset (given by the anchor hash) has been added to the VCT
log(s) that are specified in the proofs of the verifiable credential in the linkset.

Example

vct verify --anchor uEiDuIicNljP8PoHJk6_aA7w1d4U3FAvDMfF7Dsh7fkw3Wg --cas-url https://orb.domain1.com/cas

Response:

[
 {
 "domain": "https://vct.domain1.com/maple2020",
 "proofValue": "JnP2nE4jLiHsmR65q1a6Tp-HUKZanjpCstm7qAljIE3Z6Y2mEcNarOESiu1gFlsonz1soQJe69piE7qZnTqrAw",
 "found": true,
 "leafIndex": 12,
 "auditPath": [
 "rgWgpjyv6227zFbcpyRv3YR1vbLbXaOuCeYoF7uDaY4=",
 "lg4iaTTfHNrH41C8CBuSlo+VIK+f+2dA+5i5N8NzsIM="
]
 },
 {
 "domain": "https://orb.domain2.com",
 "proofValue": "6H8dEtYndINR48g4mFJ9wAxXMVYu7FdOEzpwRap5AuOTPPpd9E7LYjME-pH2kvqiFLe9ZmKDJa2YzqOoLjHJAQ",
 "found": false,
 "leafIndex": 0,
 "auditPath": null,
 "error": "get STH: 404 page not found\n"
 }
]

Universal Resolver Driver

Orb Driver is used for Universal Resolver [https://github.com/decentralized-identity/universal-resolver]

API

https://driver-url/1.0/identifiers/<your-did>

Driver will receive an Accept header with the value application/ld+json, and it should return either a valid DID Document [https://w3c-ccg.github.io/did-resolution/#output-diddocument] or a DID Resolution Result [https://w3c-ccg.github.io/did-resolution/#output-didresolutionresult]
in the HTTP body.Driver should also return an appropriate value in the Content-Type header, such as application/did+ld+json.

Startup Parameters

ORB_DRIVER_HOST_URL

URL to run the orb-driver instance on. Format: HostName:Port.

ORB_DRIVER_TLS_CACERTS

Comma-Separated list of ca certs path.

ORB_DRIVER_TLS_CERTIFICATE

TLS certificate for ORB driver.

ORB_DRIVER_TLS_KEY

TLS key for ORB driver.

ORB_DRIVER_DOMAIN

Discovery endpoint domain.

ORB_DRIVER_SIDETREE_TOKEN

Authorization token for driver REST endpoints.

ORB_DRIVER_VERIFY_RESOLUTION_RESULT_TYPE

verify resolution result type. Values [all, none, unpublished].

Verifiable Data Registry (VDR)

The VDR is a Go library that may be used by clients to manage DID operation.

New

New will return new instance of Orb VDR.

func New(keyRetriever KeyRetriever, opts ...Option) (*VDR, error)

Key Retriever interface

Key Retriever is used to manage operation keys.

GetNextRecoveryPublicKey

GetNextRecoveryPublicKey is called in recover DID to get the recover next public key. This public key will be used to
verify next recover request (the client need to use the private key to sign next recover request).

GetNextRecoveryPublicKey(didID, commitment string) (crypto.PublicKey, error)

GetNextUpdatePublicKey

GetNextUpdatePublicKey is called in update and recover DID to get the update next public key. This public key will be used to
verify next update request (the client need to use the private key to sign next update request).

GetNextUpdatePublicKey(didID, commitment string) (crypto.PublicKey, error)

GetSigningKey

GetSigningKey is called in update,recover and deactivate DID to get the private key. This private key will be used to
sign update,recover and deactivate request.

OperationType update need private key for update DID request.
OperationType recover need private key for recover or deactivate DID request.

GetSigningKey(didID string, ot OperationType, commitment string) (crypto.PrivateKey, error)

Options

New options.

WithHTTPClient

WithHTTPClient option is for custom http client.

WithHTTPClient(httpClient *http.Client) Option

WithTLSConfig

WithTLSConfig option is for definition of secured HTTP transport using a tls.Config instance.

func WithTLSConfig(tlsConfig *tls.Config) Option

WithUnanchoredMaxLifeTime

WithUnanchoredMaxLifeTime option is max time for unanchored to be trusted.

func WithUnanchoredMaxLifeTime(duration time.Duration) Option

WithVerifyResolutionResultType

WithVerifyResolutionResultType option is set verify resolution result type.

VerifyResolutionResultType Types:

	All: Will not trust server and verify provided resolution result from server against resolution result that is assembled
from published (DID anchored) and unpublished (DID not anchored yet) operations.

	Unpublished: Will not trust server and verify provided resolution result from server against resolution result that is assembled
from unpublished operations (DID not anchored yet).

	None: Will trust server and not verify document.

func WithVerifyResolutionResultType(v VerifyResolutionResultType) Option

WithAuthToken

WithAuthToken option add auth token.

func WithAuthToken(authToken string) Option

WithDomain

WithDomain option add Orb domains that vdr will them to communicate.

To add multiple domains you need to call this option once for each domain.

func WithDomain(domain string) Option

WithDocumentLoader

WithDocumentLoader option overrides the default JSONLD document loader used when processing JSONLD DID documents.

func WithDocumentLoader(l jsonld.DocumentLoader) Option

Example

import (
	"crypto"
	"github.com/hyperledger/aries-framework-go-ext/component/vdr/orb"
)

type keyRetrieverImpl struct {
	nextRecoveryPublicKey crypto.PublicKey
	nextUpdatePublicKey crypto.PublicKey
	updateKey crypto.PrivateKey
	recoverKey crypto.PrivateKey
}

func (k *keyRetrieverImpl) GetNextRecoveryPublicKey(didID string) (crypto.PublicKey, error) {
	return k.nextRecoveryPublicKey, nil
}

func (k *keyRetrieverImpl) GetNextUpdatePublicKey(didID string) (crypto.PublicKey, error) {
	return k.nextUpdatePublicKey, nil
}

func (k *keyRetrieverImpl) GetSigningKey(didID string, ot orb.OperationType) (crypto.PrivateKey, error) {
	if ot == orb.Update {
		return k.updateKey, nil
	}

	return k.recoverKey, nil
}

keyRetrieverImpl := &keyRetrieverImpl{}

vdr, err := orb.New(keyRetrieverImpl, orb.WithDomain("https://testnet.devel.trustbloc.dev"))
	if err != nil {
		return err
}

Create

Create used to create new Orb DID.

func Create(did *docdid.Doc, opts ...vdrapi.DIDMethodOption) (*docdid.DocResolution, error)

Options

Create options.

RecoveryPublicKeyOpt

This option is mandatory. Will be used to set recovery key private key for create.

UpdatePublicKeyOpt

This option is mandatory. Will be used to set update key private key for create.

OperationEndpointsOpt

This option is mandatory when domain not set. Will be used to set operation endpoint.

AnchorOriginOpt

This option is mandatory when domain not set. Will be used to set anchor origin for create request.

CheckDIDAnchored

This option is not mandatory. Will be used check if DID is anchored.

Value of CheckDIDAnchored option:

type ResolveDIDRetry struct {
	MaxNumber int
	SleepTime *time.Duration
}

Example

import (
"crypto"
"crypto/ed25519"
"crypto/rand"
"fmt"

ariesdid "github.com/hyperledger/aries-framework-go/pkg/doc/did"
"github.com/hyperledger/aries-framework-go/pkg/doc/jose"
vdrapi "github.com/hyperledger/aries-framework-go/pkg/framework/aries/api/vdr"

"github.com/hyperledger/aries-framework-go-ext/component/vdr/orb"
)

recoveryKey, recoveryKeyPrivateKey, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
	return err
}

updateKey, updateKeyPrivateKey, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
	return err
}

didPublicKey, _, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
	return err
}

jwk, err := jose.JWKFromKey(didPublicKey)
if err != nil {
	return err
}

vm,err:=ariesdid.NewVerificationMethodFromJWK("key1", "Ed25519VerificationKey2018", "", jwk)
if err != nil {
	return err
}

didDoc := &ariesdid.Doc{}

// add did keys
didDoc.Authentication = append(didDoc.Authentication, *ariesdid.NewReferencedVerification(vm,
		ariesdid.Authentication))

// add did services
didDoc.Service = []ariesdid.Service{{ID: "svc1", Type: "type", ServiceEndpoint: "http://www.example.com/"}}

// create did
createdDocResolution, err := vdr.Create(didDoc,
		vdrapi.WithOption(orb.RecoveryPublicKeyOpt, recoveryKey),
		vdrapi.WithOption(orb.UpdatePublicKeyOpt, updateKey),
		// No need to use this option because we already use domain
		// vdrapi.WithOption(orb.OperationEndpointsOpt, []string{"https://orb-1.devel.trustbloc.dev/sidetree/v1/operations"}),
		vdrapi.WithOption(orb.AnchorOriginOpt, "https://orb-2.devel.trustbloc.dev/services/orb"))
if err != nil {
	return err
}

fmt.Println(createdDocResolution.DIDDocument.ID)

Read

Read used to resolve Orb DID.

func Read(did string, opts ...vdrapi.DIDMethodOption) (*docdid.DocResolution, error)

Options

Read options.

ResolutionEndpointsOpt

This option is mandatory when domain not set. Will be used to set resolution endpoint.

Example

docResolution, err := vdr.Read(didID)
if err != nil {
	return err
}

fmt.Println(docResolution.DIDDocument.ID)

Update

Update used to update or recover Orb DID.

func Update(didDoc *docdid.Doc, opts ...vdrapi.DIDMethodOption) error

Options

Update options.

RecoverOpt

This option is mandatory. Will be used to signal that it’s recover request [true, false].

AnchorOriginOpt

This option is not mandatory. Will be used to set anchor origin for recover request.

OperationEndpointsOpt

This option is mandatory when domain not set. Will be used to set operation endpoint for recover request.

ResolutionEndpointsOpt

This option is mandatory when domain not set. Will be used to set resolution endpoint.

CheckDIDUpdated

This option is not mandatory. Will be used check if DID is updated.

Value of CheckDIDUpdated option:

type ResolveDIDRetry struct {
	MaxNumber int
	SleepTime *time.Duration
}

Example Update

updateKey, updateKeyPrivateKey, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
	return err
}

// this key will used for next update request
keyRetrieverImpl.nextUpdatePublicKey = updateKey

didPublicKey, _, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
	return err
}

jwk, err := jose.JWKFromKey(didPublicKey)
if err != nil {
	return err
}

vm,err:=ariesdid.NewVerificationMethodFromJWK("key1", "Ed25519VerificationKey2018", "", jwk)
if err != nil {
	return err
}

didDoc := &ariesdid.Doc{ID: didID}

didDoc.Authentication = append(didDoc.Authentication, *ariesdid.NewReferencedVerification(vm,
		ariesdid.Authentication))

didDoc.CapabilityInvocation = append(didDoc.CapabilityInvocation, *ariesdid.NewReferencedVerification(vm,
		ariesdid.CapabilityInvocation))

didDoc.Service = []ariesdid.Service{
		{
			ID: "svc1",
			Type: "typeUpdated",
			ServiceEndpoint: "http://www.example.com/",
		},
		{
			ID: "svc2",
			Type: "type",
			ServiceEndpoint: "http://www.example.com/",
		},
}

if err := vdr.Update(didDoc); err != nil {
	return err
}

// update private key will be used to sign next update request
keyRetrieverImpl.updateKey = updateKeyPrivateKey

Example Recover

recoveryKey, recoveryKeyPrivateKey, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
	return err
}

// this key will used for next recover request
keyRetriever.nextRecoveryPublicKey = recoveryKey

didDoc := &ariesdid.Doc{ID: didID}

didPublicKey, _, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
	return err
}

jwk, err := jose.JWKFromKey(didPublicKey)
if err != nil {
	return err
}

vm,err:=ariesdid.NewVerificationMethodFromJWK("key1", "Ed25519VerificationKey2018", "", jwk)
if err != nil {
	return err
}

didDoc.CapabilityInvocation = append(didDoc.CapabilityInvocation, *ariesdid.NewReferencedVerification(vm,
	ariesdid.CapabilityDelegation))

didDoc.Service = []ariesdid.Service{{ID: "svc1", Type: "type", ServiceEndpoint: "http://www.example.com/"}}

if err := e.vdr.Update(didDoc,
	vdrapi.WithOption(orb.RecoverOpt, true),
	vdrapi.WithOption(orb.AnchorOriginOpt, "https://orb-2.devel.trustbloc.dev/services/orb")); err != nil {
	return err
}

// recover private key will be used to sign next recover request
keyRetrieverImpl.recoverKey = recoveryKeyPrivateKey

Deactivate

Deactivate used to deactivate Orb DID.

func Deactivate(didID string, opts ...vdrapi.DIDMethodOption) error

Options

Deactivate options.

OperationEndpointsOpt

This option is mandatory when domain not set. Will be used to set operation endpoint.

Example

if err:=vdr.Deactivate(discoverableDID);err!=nil{
 return err
}

System Services

	ActivityPub

	Authorization

	Batch Writer

	Observer

	Sidetree

	Content Addressable Storage (CAS)

	AMQP Publisher/Subscriber

	Task Manager

	Onboarding and Recovery

	Databases

	Witness Policy

	Key Management

	Metrics

ActivityPub

Orb implements the ActivityPub [https://www.w3.org/TR/activitypub/] spec for server to server communication.
Communication is based on posting an activity (JSON document) to the server’s local outbox which then gets delivered
to one or more server inboxes. HTTP signatures are used for authentication
and authorization.

Outbox/Inbox

Inter-server communication is performed by posting an Activity to the Orb server’s Outbox. The
Outbox handler delivers the activity to one or more targets by resolving the URIs of the target inboxes
(from the “to” field of the activity) and posting the activity to each of the URIs. The target Inbox authorizes
the message and invokes the appropriate handler.

[image: ../../_images/ap-outbox-inbox.svg]
Outbox

Messages are published to the AMQP orb.activity.outbox queue and are handled asynchronously by a single instance
in the Orb domain. A message contains two fields:

	Type: One of ‘broadcast’, ‘deliver’, or ‘resolve-and-deliver’

	Activity: The posted ActivityPub activity

When an activity is posted to the Outbox, it is first validated and then a message of type, ‘broadcast’, is published
to the AMQP orb.activity.outbox queue. The message is handled by a single instance in the Orb domain.

Broadcast Message Handler

The ‘broadcast’ message handler performs the following steps:

	Stores the activity (which is contained in the message) to the local outbox database.

	Invokes an activity handler (this handler may include additional steps, depending on the type of activity).

	Resolves the inboxes of the URIs in the “to” field of the activity. This may involve retrieving URIs from the
followers or witnesses collections. The ActivityPub
service [https://trustbloc.github.io/activityanchors/#actor-discovery] (actor) of each recipient URI is resolved via
.well-known and a result containing the resolved URI (and potentially
an error) is returned for each resolved URI.

Each result returned from the Outbox Resolver contains a URI and potentially an error. For each result that does not
contain an error, a message of type, ‘deliver’, is published to the orb.activity.outbox queue with the URI from the
result. For each result containing an error, a message of type, ‘resolve-and-deliver’, is published to the
orb.activity.outbox queue so that the URI may be retried.

Deliver Message Handler

The ‘deliver’ handler posts the activity to the inbox URI (contained in the message). (Note that the appropriate
HTTP signatures are added to the HTTP request.) If a transient error occurs
(such as HTTP 500) then the message is NACK’ed and the ‘deliver’ message will be retried (according to the
message redelivery mechanism).

Resolve-and-Deliver Message Handler

The ‘resolve-and-deliver’ handler resolves the inboxes of the URI contained in the message. Each result returned from
the Outbox Resolver contains a URI and potentially an error. For each result that does not contain
an error, a ‘deliver’ message is published to the orb.activity.outbox queue with the URI from the result.
If the result contains a transient error (e.g. HTTP 500) then the message is NACK’ed and the ‘resolve-and-deliver’
message is retried (according to the message redelivery mechanism).
If a persistent error occurs (e.g. 400) then the URI is skipped.

Inbox

The inbox is a REST endpoint in Orb which accepts activities. When an activity
is received, the HTTP signature in the header of the request is verified
using the public key of the actor [https://trustbloc.github.io/activityanchors/#actor-discovery] that sent the activity.
After the actor is authenticated, a message is posted to the orb.activity.inbox queue and is processed by one of the
server instances in the domain.

The inbox handler first stores the activity in the ‘inbox’ database and authorizes the activity. (Each activity
could have different authorization criteria which are explained in each of the activities below.) The appropriate
activity handler is then invoked.

Activities

Follow

A Follow [https://trustbloc.github.io/activityanchors/#follow-activity] activity is posted by a server to another server
so that activities may be synchronized between them. For example, domain1 posts a Follow activity to domain2 indicating
that it wants notifications of objects created by domain2 (via the
Create [https://trustbloc.github.io/activityanchors/#create-activity] activity). Domain1 is also notified of any objects
created by servers that domain2 is following via the
Announce [https://trustbloc.github.io/activityanchors/#announce-activity] activity. When a server receives a
Follow activity in its inbox, it authorizes the ‘actor’ (which is the originating server) in the Follow request using a
configurable Follow Authorization Policy. If authorized, the actor is added to the list
of followers and an Accept [https://trustbloc.github.io/activityanchors/#accept-follow-activity] activity is posted
to the actor’s inbox. When an Accept [https://trustbloc.github.io/activityanchors/#accept-follow-activity] activity is
received in the inbox, the activity is first validated against a previously posted Follow activity and then the ‘actor’
in the Accept activity (which was the target server in Follow) is added to the following collection.

[image: ../../_images/ap-follow-accept.svg]If the actor posting the Follow activity is not authorized then a
Reject [https://trustbloc.github.io/activityanchors/#reject-follow-activity] activity is posted to the actor’s inbox.
A Reject [https://trustbloc.github.io/activityanchors/#reject-follow-activity] of a Follow activity simply logs the
fact that the request was rejected.

[image: ../../_images/ap-follow-reject.svg]

Undo Follow

An Undo [https://trustbloc.github.io/activityanchors/#undo-follow-activity] activity is posted to ‘unfollow’ a
server. The Undo activity is posted to the server to which the previous Follow activity was posted and the target server
is removed from the following list. The target server handles the Undo activity by removing the originating server from
the followers list.

Invite Witness

An Invite activity is posted to another server in order to invite that server to be a witness of
Anchor Events [https://trustbloc.github.io/activityanchors/#anchorevent]. For example, domain1 posts an Invite activity
to domain2 indicating that it wants domain2 to be a witness of Anchor Events produced by domain1 (using the
Offer activity).

When a server receives an Invite witness activity in its inbox, it authorizes the actor (which is the originating
server) in the Invite request using an Invite Witness Authorization Policy. If
authorized, the actor is added to the witnessing collection and an
Accept [https://trustbloc.github.io/activityanchors/#accept-invite-witness-activity] activity is posted to the actor’s
inbox. When an Accept [https://trustbloc.github.io/activityanchors/#accept-invite-witness-activity] activity is received
in the inbox, the activity is first validated against a previously posted Invite witness activity and then the ‘actor’ in
the Accept activity is added to the witnesses collection.

[image: ../../_images/ap-invite-accept.svg]If the actor is not authorized, then a Reject [https://trustbloc.github.io/activityanchors/#reject-invite-witness-activity]
activity is posted to the actor’s inbox. A Reject [https://trustbloc.github.io/activityanchors/#reject-invite-witness-activity]
of an Invite witness activity simply logs the fact that the request was rejected.

[image: ../../_images/ap-invite-reject.svg]

Undo Invite Witness

An Undo [https://trustbloc.github.io/activityanchors/#undo-invite-witness-activity] activity is posted to remove a
server as a witness. The Undo activity is posted to the server to which the previous Invite activity was posted and the
target server is removed from the witnesses list. The target server handles the Undo activity by removing the originating
server from the witnessing list.

Offer/Accept

An Offer [https://trustbloc.github.io/activityanchors/#offer-activity] activity is posted to one or more servers that are
contained in the witnesses collection in order to collect proofs. (The selection of witnesses is dictated by a
Witness Policy which determines the minimum number of proofs required.) When a server
receives an Offer activity in its inbox, the request is first authorized by ensuring that the actor of the Offer is in the
witnessing collection. Once authorized, the Anchor Linkset
which is embedded in the Offer activity is added to the ledger (VCT) and an
Accept [https://trustbloc.github.io/activityanchors/#accept-anchor-activity] anchor activity (which contains the proof)
is posted back to the originator of the offer. When an Accept [https://trustbloc.github.io/activityanchors/#accept-anchor-activity]
anchor activity is received in the inbox, the activity is first validated against a previously posted Offer activity
and then the embedded proof for the Anchor Linkset is
added to the collection of existing proofs. Once a sufficient number of proofs is received (according to the
Witness Policy) then a complete anchor linkset (containing all proofs) is
constructed and the anchor linkset is posted to the queue, orb.anchor_linkset, to be processed by the
Batch Writer.

[image: ../../_images/ap-offer-accept.svg]If the actor of the Offer is not in the witnessing collection then a
Reject [https://trustbloc.github.io/activityanchors/#reject-anchor-activity] activity is posted to the originating actor.
The Reject [https://trustbloc.github.io/activityanchors/#reject-anchor-activity] of an Offer activity simply logs the
fact that the request was rejected.

[image: ../../_images/ap-offer-reject.svg]

Create/Announce

A Create [https://trustbloc.github.io/activityanchors/#create-activity] activity is posted by the
Batch Writer to one or more servers that are contained in the followers collection.

When a server receives a Create [https://trustbloc.github.io/activityanchors/#create-activity] activity in its
inbox, the Anchor Linkset which is embedded in the Create
activity is first stored to CAS and then the hashlink of the anchor linkset is posted to the orb.anchor queue so that
it may be processed by the Observer.
After the Observer processes the anchor linkset, it posts a Like [https://trustbloc.github.io/activityanchors/#like-activity]
activity back to the “actor” of the Create activity. The Create activity is also forwarded to the servers in the
followers collection using the Announce [https://trustbloc.github.io/activityanchors/#announce-activity] activity.

When a server receives an Announce [https://trustbloc.github.io/activityanchors/#announce-activity] activity in its
inbox the Anchor Linkset which is embedded in the
Announce activity is first stored to CAS and then the hashlink of the anchor linkset is posted to the orb.anchor queue
so that it may be processed by the Observer.
After the Observer processes the anchor linkset, it posts a Like [https://trustbloc.github.io/activityanchors/#like-activity]
activity back to the “actor” of the Announce activity as well as to the originator of the anchor linkset.

[image: ../../_images/ap-create-announce.svg]

Like

A Like [https://trustbloc.github.io/activityanchors/#like-activity] activity is posted by the Observer after having
processed an anchor linkset. The Like activity includes a “url” field which is a
hashlink [https://datatracker.ietf.org/doc/html/draft-sporny-hashlink]. This hashlink contains metadata of one or
more locations where the anchor is replicated. (The alternate locations may be retrieved using
WebFinger.) When a server receives the Like activity in its inbox,
it adds the additional URIs to the anchor link database.

Undo Like

An Undo [https://trustbloc.github.io/activityanchors/#undo-like-activity] activity is posted to inform other servers
that it no longer replicates an anchor. The Undo activity is posted to the server to which the previous Like
activity was posted. The target server handles the Undo activity by removing the link from the anchor link database.

Authorization Policy

Authorization policies are applied when handling the Follow and Invite activities. If authorization fails then a Reject
activity is posted to the originating server.

Follow Authorization Policy

An authorization policy may be configured for the Follow activity using the configuration parameters,
follow-auth-policy. The possible values are accept-all and accept-list. If
accept-all
is used then all Follow requests are accepted. If accept-list is used then the actor in the Follow activity must be in the
accept-list database.

Invite Witness Authorization Policy

An authorization policy may be configured for the Invite Witness activity using the configuration
parameters, invite-witness-auth-policy. The possible values are accept-all
and accept-list. If accept-all is used then all Invite witness requests are accepted. If accept-list is used then the
actor in the Invite activity must be in the accept-list database.

Accept List

An accept-list is simply a database of server URLs that are authorized for a particular type of operation. The
two types of operations are follow and invite-witness. If the actor URL is in the follow accept list then a
Follow request from that server is authorized. If the actor URL is in the invite-witness accept list then an Invite
witness request from that server is authorized.

The accept-list is managed via the REST endpoint /services/orb/acceptlist

Authorization

Authorization in Orb is typically performed using bearer tokens for client-to-server communication.
For server-to-server communication, authentication is first performed using HTTP signatures and then each endpoint
performs its own authorization.

Bearer Tokens

For endpoints that require authorization, a client must add a bearer token [https://datatracker.ietf.org/doc/html/rfc6750#section-2.1]
to the HTTP request header as follows:

Authorization:[Bearer mytoken]

The server matches the bearer token in the request header against the required token(s) for the particular endpoint.
Each REST endpoint may be
configured to require tokens for both read (GET) and write (POST)
requests. If no token is defined for an endpoint then no authorization is performed. Multiple tokens may be defined
for read and write requests. If more than one token is defined then authorization succeeds if any of the tokens is found
in the request header. If a token for the request is required but not found in the request header then
HTTP signature verification is performed.

[image: ../../_images/auth-bearer-token.svg]

HTTP Signatures

A common HTTP client within Orb is used for all server-to-server communications. If HTTP signatures are
enabled then the HTTP client sets additional headers on the HTTP
request.

Headers

The following headers are added to the request before it is sent: Date, Digest, and Signature. For example:

Date:[Thu, 17 Feb 2022 14:29:24 GMT]
Digest:[SHA-512=vXXy/lk6D+XE8fYRTL7OS7izBUn6ntk60Rn97/gOSnbSxHZuaPvPTw1FW427qLqYpA0xGcXyPDQh4ujwret4aw==]
Signature:[keyId="https://orb.domain1.com/services/orb/keys/main-key",algorithm="Ed25519",headers="(request-target) Date Digest",signature="8AGVZi+xaDQ2kgD4sZUd4e2c2oOIkxzou2MoSSvQv72QJeSsoLa8+qJ1A+w2xkTDHNDfBTG8T/mNmtmYouv9Ag=="]

Date Header

The Date header is set to the current date/time.

Digest Header

The Digest header contains the hash of the request body, prepended by the algorithm. If a body was not included
in the request then Digest will be empty.

Signature Header

The Signature header contains a comma-separated string of field-values (i.e. field1=value1,field2=value2,…)
where the fields are defined as follows:

keyId

The value of the keyId field is the URI of the public key that may be used to verify the signature.
The value of keyId must be resolvable via HTTP or another protocol.

algorithm

The algorithm field contains the algorithm used to sign the request. Orb uses
KMS to sign the request using the Ed25519 algorithm.

headers

The headers field declares the set of headers that should be signed. The value of this field is a space-separated
string that contains the following set of fields:

	(request target) - Includes the request method (GET, POST) and the request URI. For example: POST https://orb.domain1.com.

	Date - Points to the Date header.

	Digest - Points to the Digest header (this value is not included if the Digest header is empty).

signature

The signature field contains the base64-encoded signature of the headers that are declared in the
headers field.

Signature Verification

On receiving a request, the Orb server retrieves the URI specified in the value of the keyId field from
the Signature header and then sends a request to this URI. The response of the request is in
the following format:

{
 "id": "https://orb.domain1.com/services/orb/keys/main-key",
 "owner": "https://orb.domain1.com/services/orb",
 "publicKeyPem": "-----BEGIN PUBLIC KEY-----\nMCowBQYDK2VwAyEArK46BYVBHCM1Th+kKCFzabVmbTmTXRL5SwH+m2WvKKY=\n-----END PUBLIC KEY-----\n"
}

The value in the signature field is then verified using the public key. If not valid then an HTTP 401 Unauthorized response is sent
to the client. If valid, the owner of the key is retrieved. (The owner is an ActivityPub
service [https://trustbloc.github.io/activityanchors/#actor-discovery] (actor)). Following is a sample response:

{
 "@context": [
 "https://www.w3.org/ns/activitystreams",
 "https://w3id.org/security/v1",
 "https://w3id.org/activityanchors/v1"
],
 "followers": "https://orb.domain1.com/services/orb/followers",
 "following": "https://orb.domain1.com/services/orb/following",
 "id": "https://orb.domain1.com/services/orb",
 "inbox": "https://orb.domain1.com/services/orb/inbox",
 "liked": "https://orb.domain1.com/services/orb/liked",
 "likes": "https://orb.domain1.com/services/orb/likes",
 "outbox": "https://orb.domain1.com/services/orb/outbox",
 "publicKey": {
 "id": "https://orb.domain1.com/services/orb/keys/main-key",
 "owner": "https://orb.domain1.com/services/orb",
 "publicKeyPem": "-----BEGIN PUBLIC KEY-----\nMCowBQYDK2VwAyEArK46BYVBHCM1Th+kKCFzabVmbTmTXRL5SwH+m2WvKKY=\n-----END PUBLIC KEY-----\n"
 },
 "shares": "https://orb.domain1.com/services/orb/shares",
 "type": "Service",
 "witnesses": "https://orb.domain1.com/services/orb/witnesses",
 "witnessing": "https://orb.domain1.com/services/orb/witnessing"
}

The value of the publicKey.id field in the ActivityPub service (actor) is then validated against the ID of the public
key to ensure that they match. If they don’t match then an HTTP 401 Unauthorized response is sent to the client.
If they do match then authentication has succeeded and the request, along with the actor, is forwarded to the
appropriate handler. (The actor may be used by the handler to perform authorization.)

[image: ../../_images/httpsignatures.svg]Note that public keys and actors are cached (with an expiry)
so that remote calls aren’t required each time a signature verification is performed.

Batch Writer

A Sidetree operation (Create, Update, Recover and Deactivate) is posted by a client over the operations
REST endpoint. The operation is validated according to Sidetree DID Operations and added to
the Operation Queue.

The Batch Writer:

	Drains operations from the Operation Queue

	Batches multiple Sidetree operations together into Sidetree batch files
as per Sidetree file structure spec [https://identity.foundation/sidetree/spec/#file-structures]

	Stores the Sidetree batch files into Content Addressable Storage (CAS)

	Anchors a reference to the main Sidetree batch file (core index file) on the anchoring system as a Sidetree transaction

The number of operations that can be stored in the Sidetree batch files is limited by
Sidetree protocol parameter MAX_OPERATION_COUNT [https://identity.foundation/sidetree/spec/#:~:text=1%2C000%20bytes-,MAX_OPERATION_COUNT,-Maximum%20number%20of].
The Batch Writer cuts Sidetree batches if the number of operations in the batch writer queue reaches MAX_OPERATION_COUNT
or if the batch writer reaches the batch writer timeout batch-writer-timeout.

Operation Queue

The Operation Queue in Orb is an implementation of the sidetree-core-go [https://github.com/trustbloc/sidetree-core-go]
operation queue interface. The implemented functions are:

	Add: Adds an operation to the queue

	Remove: Returns and removes up to N operations from the queue

	Peek: Returns (but does not remove) up to N operations from the queue

	Len: Returns the current length of the queue

Orb’s implementation of the Operation Queue is backed by an AMQP message broker and a database. Each Orb instance
of a domain stores a task entry in the op-queue database on startup. The task entry contains an ID and an
update time. The ID is simply the unique ID of the Orb instance (which is a GUID generated by the
Task Manager on startup) and the update time contains the timestamp of when the task
entry was last updated. (This timestamp is used to check the aliveness of the Orb instance.)

Add Operation

A Sidetree operation is posted by a client to the operations REST endpoint (which is
exposed by the sidetree-core-go [https://github.com/trustbloc/sidetree-core-go] library). After the operation is validated,
the Add function of Orb’s Operation Queue is invoked. The Operation Queue then publishes a message containing the operation
to the AMQP orb.operation queue.
Each Orb instance has a pool of subscribers for the orb.operation queue. The number of subscribers in the pool is determined
by startup parameter op-queue-pool. One of the subscribers on an Orb instance handles the
message by adding the operation to the op-queue database and also to an in-memory queue. Operations are stored to the
database for recovery purposes, i.e. if the Orb instance goes down then another instance will repost the operations.
(See Recovery for details.) Each database entry contains the contents of the operation and is also tagged
(indexed) by:

	Task ID: Associates an operation with a specific task entry (as described above)

	Expiration Time: Tells the Database Expiry service when this entry may be deleted.
This value is set to (current time) + (batch writer timeout) + (1 minute).

[image: ../../_images/op-queue-add.svg]

Remove Operations

The sidetree-core-go [https://github.com/trustbloc/sidetree-core-go] library queries the Operation Queue to see if there are
enough operations to cut a batch (according to the Sidetree protocol parameter
MAX_OPERATION_COUNT [https://identity.foundation/sidetree/spec/#:~:text=1%2C000%20bytes-,MAX_OPERATION_COUNT,-Maximum%20number%20of],
or if the batch has timed out (according to startup parameter batch-writer-timeout).
When the batch is cut then the sidetree-core-go library calls the Remove function on the Operation Queue to remove up
to N operations from the queue. The Remove function is quasi-transactional such that it returns an Ack and a Nack function
along with the operations.

Ack Function

When the sidetree-core-go [https://github.com/trustbloc/sidetree-core-go] library has successfully processed the operations
then the Ack function is called. The Ack function deletes the removed operations from the op-queue database.

Nack Function

If the sidetree-core-go [https://github.com/trustbloc/sidetree-core-go] library has failed to successfully process the
operations then the Nack function is called. The Nack function reposts the operations to the AMQP orb.operation queue
so they may be retried (potentially by another server instance) and the operations are deleted from the database.
Each operation message is reposted with a delay to give the server a chance to recover from whatever caused
processing to fail in the first place. The delay is calculated according to the number of failed retries along with parameters,
mq-redelivery-initial-interval,
mq-redelivery-max-interval,
and mq-redelivery-multiplier. The retries
header value is also set on the message. The value is first incremented before it is reposted. Once the maximum number of
retries for an operation has been reached, the operation is discarded.

[image: ../../_images/op-queue-cut.svg]

Recovery

An Orb server may go down with pending operations in the queue. The Operation Queue Monitor Task is registered with
the Task Manager on startup to periodically run on one server instance in the domain.
The period is specified by startup parameter op-queue-task-monitor-interval.
This task monitors the operation queue tasks of other servers to ensure that if a server goes down then the operations
associated with that server are reposted to the AMQP orb.operation queue.

Each Orb instance periodically (also using the period specified by
op-queue-task-monitor-interval) updates the update time
of its own task entry in the database in order to indicate to other servers that the instance is still alive.

When the monitor task runs, it queries the op-queue database for all task entries (excluding its own) and checks the
update time of the entry. If the update time is older than the expiration time configured with startup parameter
op-queue-task-expiration then the server that owns the task is considered to
be down. At this point, the op-queue database is queried for the operations associated with the task and each operation
is reposted to the queue. (As described in the section above, each operation
message reposted to the orb.operation queue has a retries header value which is incremented before it is reposted.
Once the maximum number of retries for an operation has been reached, the operation is discarded.)
All operations associated with this task are then deleted from the database and the task entry itself is also
deleted from the database. (The task entry is deleted from the database since, when the dead server comes back online,
it will generate a new task ID.)

[image: ../../_images/op-queue-recovery.svg]

Anchor Writer

When a batch of operations is cut from the operation queue, the sidetree-core-go
library creates a Sidetree anchor object and invokes WriteAnchor. The Orb implementation of
WriteAnchor performs the following steps:

	Retrieves previous anchors for all DIDs in the batch

	Resolves the witnesses for the batch

	Creates an Anchor Linkset containing the operations

	Posts an Offer activity (containing the anchor linkset) to each of the witnesses

[image: ../../_images/write-anchor.svg]

Witness Proof Handler

A witness accepts an Offer [https://trustbloc.github.io/activityanchors/#offer-activity]
of an anchor linkset by posting an Accept [https://trustbloc.github.io/activityanchors/#accept-anchor-activity]
activity to the inbox. The proof is extracted from the anchor linkset and the proof handler is invoked.

The current status of the anchor is retrieved from the anchor status database. If the status of the
anchor is still not complete then the provided proof from the Accept activity is added to the existing
set of proofs. The witness policy is then evaluated in order to determine
if the anchor has a sufficient number of proofs. If the witness policy is not satisfied then nothing
else is done, otherwise:

	The status of the anchor is marked as complete

	The anchor linkset is updated with all witness proofs

	The anchor linkset is published to the orb.anchor_linkset queue so that it may be processed by the

	Anchor Linkset Handler

[image: ../../_images/proof-handler.svg]

Anchor Linkset Handler

On startup, the Anchor Linkset Handler subscribes to the orb.anchor_linkset queue in order to receive
witnessed anchor linksets. Upon receiving an anchor linkset from the queue:

	The verifiable credential is extracted from the anchor linkset and saved to the verifiable credential database

	The anchor linkset is saved to the Content Addressable Storage (CAS)

	The anchor linkset is published to the orb.anchor queue so that it may be processed by the Observer

	A Create [https://trustbloc.github.io/activityanchors/#create-activity] activity (containing the anchor linkset) is posted to all followers

[image: ../../_images/anchor-linkset-handler.svg]

Observer

The Observer subscribes to the orb.anchor queue and handles witnessed anchor linksets [https://trustbloc.github.io/activityanchors/#anchorevent].
Upon receiving an anchor linkset, the Observer:

	Loads the anchor linkset from the Content Addressable Storage (CAS)

	Validates the witness signatures

	Retrieves Sidetree batch files from CAS

	Validates Sidetree batch files:

	Ensures that the number of operations does not exceed the maximum allowed limit

	Ensures that the size of each operation does not exceed the maximum allowed limit

	Ensures the batch meets proof-of-work requirements

	Stores each DID operation into the Operation store

	Deletes the corresponding unpublished DID operations from the Unpublished Operation store

[image: ../../_images/observer.svg]

Sidetree

Protocol

Sidetree is a protocol for creating scalable Decentralized Identifier [https://w3c.github.io/did-core/] networks
that can run atop any existing decentralized anchoring system (e.g. Bitcoin, Ethereum, distributed ledgers,
witness-based approaches). The protocol allows users to create globally unique, user-controlled identifiers
and manage their associated PKI metadata, all without the need for centralized authorities or trusted third parties.
The syntax of the identifier and accompanying data model used by the protocol is conformant with the
W3C Decentralized Identifiers [https://w3c.github.io/did-core/] specification.
Implementations of the protocol can be codified as their own distinct DID Methods and registered in the
W3C DID Method Registry [https://w3c.github.io/did-spec-registries/#did-methods].

See the latest spec [https://identity.foundation/sidetree/spec/] for the full Sidetree specification.

Sidetree Interactions

[image: Sidetree Interactions Diagram]

Orb node will validate each Sidetree operation as per specification. Valid operation will then be added
to the batch writer queue and unpublished operations store. Batch writer will then batch multiple Sidetree
operations together and store them in Sidetree batch files as per
Sidetree file structure spec [https://identity.foundation/sidetree/spec/#file-structures].

Next, Sidetree batch file information will be stored into anchor index and anchor index will be witnessed
as per witness policy. Observer will process witnessed anchor index and Sidetree batches as per
Sidetree transaction operation processing [https://identity.foundation/sidetree/spec/#transaction-operation-processing]
and store DID operations into operations store. It will delete observed DID operation from unpublished operation store.
DID will be resolved from stored DID operations.

DID Operations

Sidetree supports Create, Update, Recover and Deactivate(CRUD) operations.
Check our Sidetree did operations [https://identity.foundation/sidetree/spec/#did-operations] and
Sidetree API spec [https://identity.foundation/sidetree/api/] to learn how to construct JSON for Sidetree CRUD operations.

DID Resolution

Upon invocation of resolution, DID resolver will first retrieve all published (observed) and unpublished operations
for the DID Unique Suffix of the DID URI being resolved.

DID document processing starts by iterating over all Create operations (ordered by anchoring time) and applying
first valid Create operation.
Next step in the processing is applying Recover and Deactivate operations based on previous operation Next Recovery Commitment.
Once Recover and Deactivate operations have been applied to the document (or if no Recovery and Deactivate operations are present)
the resolver will proceed to Update operation processing based on previous operation Next Update Commitment only if
the Next Update Commitment value is present and no Deactivate operations were successfully processed earlier.

The resolver will check each operation for validity (including validating signature for update, recover and deactivate operations)
before it applies that operation patch and commitments to DID Document.

See Sidetree resolution spec [https://identity.foundation/sidetree/spec/#resolution] for more details about resolution.

REST Endpoints

Sidetree resolution endpoint:

/sidetree/v1/identifiers

Sidetree operations endpoint:

/sidetree/v1/operations

See the API spec [https://identity.foundation/sidetree/api/] for the full API specification to interact with a Sidetree node.

Versioning

Sidetree References

See the latest spec [https://identity.foundation/sidetree/spec/] for the full Sidetree specification.

See the API spec [https://identity.foundation/sidetree/api/] for the full API specification to interact with a Sidetree node.

See the reference implementation document [https://github.com/decentralized-identity/sidetree/blob/master/docs/core.md] for description of the reference implementation.

See the reference implementation [https://github.com/decentralized-identity/sidetree] for Sidetree reference implementation.

Operation/Resolution Caching

Orb node provides two unique caching features for resolving DIDs:

	resolve DIDs using unpublished operations

	resolve DIDs using published/unpublished operations from anchor origin

Operation/Resolution Caching Parameters

The following section enumerates the startup parameters that have to be configured in order to enable
operation caching and resolution from anchor origin domain.

Parameter enable-unpublished-operation-store
should be set to true to enable un-published operation store. If set to true Orb node will
upon validating Sidetree operation insert this operation into unpublished operations store
and use it immediately for DID resolution. Hence, Orb clients will be able to immediately
see their change (without waiting for anchoring/observing process to complete).
This unpublished Sidetree operation will be removed from unpublished operation store
when Orb node is done observing Sidetree operation. At this point Sidetree operation has been
stored into published operation store and will be used for DID resolution.

Parameter unpublished-operation-store-operation-types
determines the operation types that will be caches. Default value is “create,update” which enables storing unpublished ‘create’ and ‘update’ operations into
unpublished store and using those unpublished ‘create’ and ‘update’ operations for resolving document.

Parameter resolve-from-anchor-origin
should be set to “true” in order to resolve DID from anchor origin.
Orb node will resolve DID document locally,
determine DID’s anchor origin and then resolve DID document from anchor origin Orb node.
If anchor origin Orb node has additional published/unpublished operations then Orb node will
add those operations for DID resolution.
This feature allows non origin servers to immediately resolve updated DIDs.

Parameter include-unpublished-operations-in-metadata
should be set to “true” to include unpublished operations in metadata. This setting is required
on anchor origin node if non anchor origin nodes wish to resolve from anchor origin.

Parameter include-published-operations-in-metadata
should be set to “true” to include published operations in metadata. This setting is required
on anchor origin node if non anchor origin nodes wish to resolve from anchor origin.

Operation Update Parameters

In order to ensure consistent operation caching, Orb client will normally issue
document update against anchor origin Orb node. However, if Orb node receives
an update operation for different anchor origin it will resolve DID against
anchor origin Orb node and make sure it has processed the latest operations
from anchor origin Orb node before accepting an update operation.

Parameter verify-latest-from-anchor-origin
should be set to “true” to verify if Orb node has already processed the latest operations
from anchor origin before accepting an update operation. If Orb node is behind in
processing DID operations (comparing to anchor origin) then Sidetree operation
will be rejected.
This feature also guards against DID document branching.

Content Addressable Storage (CAS)

Content Addressable Storage (CAS) is a persistent storage of content where the primary key is the hash of the content.
This ensures that content for a given key is immutable, i.e. if the content changes then the primary key changes.

Orb supports two types of CAS: local storage (in a database) and IPFS [https://ipfs.io/]. The type of CAS storage that
an Orb instance uses is dictated by the startup parameter, cas-type. Additionally, if
cas-type is set to local and the startup parameter,
replicate-local-cas-writes-in-ipfs, is set to true, then CAS
data is stored in the local database and also replicated to IPFS [https://ipfs.io/].

Local

A local CAS storage is simply a database that stores content using the
sha-256 multihash [https://w3c-ccg.github.io/multihash/index.xml#tv-sha256] of the content as the primary key.
The content is not automatically replicated (as is the case with IPFS). A local CAS
storage relies on ActivityPub activities (Create and Announce) to replicate data.

IPFS

If the cas-type is set to ipfs then an additional startup parameter,
ipfs-url is required to point to the IPFS node. The IPFS node
must have permissions to read and write content. This node replicates the content to other IPFS nodes in the network.

The version of the content ID (CID [https://docs.ipfs.io/concepts/content-addressing/#identifier-formats]) that is used
as the key for content retrieval is specified with startup parameter cid-version.

AMQP Publisher/Subscriber

The publisher/subscriber subsystem in Orb is configurable to either use an
AMQP [https://www.amqp.org/] message broker or an in-memory implementation.
(The in-memory implementation should only be used during development and for demos.)

The AMQP URL is specified by the startup parameter mq-url. If
this parameter is not set then the in-memory implementation is used.

Publisher and Subscriber

A subscriber is a handler for a message posted to a queue. On startup, each Orb instance subscribes to various
queues. The queues are global to the domain, i.e. each Orb instance subscribes to the same queues.

A publisher posts messages to the queues. The posted message is handled by one (and only one) of the subscribers in
one of the Orb instances. If the handler replies with an ack, then the message is considered to be processed.

It is up to the AMQP implementation to direct messages to subscribers using a
load-balancing algorithm.

[image: ../../_images/mq-pubsub.svg]

Message Redelivery

When a message is published to a queue, one of the subscribers in the Orb domain handles the
message. If a processing error occurs (such as the DB is temporarily unavailable) then the handler replies
with a nack. In this case the message is sent to a orb.redelivery queue so that it may be retried at a later time.

The orb.redelivery queue is configured as the dead-letter-queue for all queues in Orb.
When a message is rejected (nacked) by a subscriber, it is automatically sent to the orb.redelivery
queue. The first time a message is rejected, the redelivery handler immediately redelivers
the message to the original destination queue. If the message is rejected again, an expiration
header value is set on the message, and the message is posted to a orb.wait queue. The expiration value is
calculated by a backoff algorithm using the following parameters:

	mq-redelivery-initial-interval

	mq-redelivery-multiplier

	mq-redelivery-max-interval

The backoff algorithm increases the expiration with each redelivery attempt. For example, if the initial interval
is set to 2s and the multiplier is set to 1.5 then the expiration is set 3s. The next time a redelivery of the
message occurs, the expiration will be set to 4.5s. Expiration time is limited by parameter
mq-redelivery-max-interval.

The orb.wait queue has no subscribers, so the message sits there until it expires. The orb.redelivery queue is also
configured as the dead-letter-queue for the orb.wait queue, so when the message expires it is automatically sent
back to the orb.redelivery queue and the redelivery handler processes the message again.

The redelivery handler looks at the reason field in the message header. If reason is set to ‘expired’ then the
message is posted to the original destination queue, otherwise (if reason is ‘rejected’) it is posted to the orb.wait
queue with an even greater expiration value. This process repeats until the
maximum number of redelivery attempts has been reached, at which
point redelivery for the message is aborted.

[image: ../../_images/mq-pubsub-redeliver.svg]

Publisher Pool

The Publisher publishes messages over an AMQP channel to an AMQP server. A single publisher channel publishes requests
synchronously and therefore (for performance reasons) a pool of channels is used so that requests may be published concurrently.
The channels in a pool are opened at startup over a single connection, and are reused over the lifetime of the server
(since there is a performance penalty for creating and closing channels). The size of the channel pool is specified by parameter
mq-publisher-channel-pool-size. If the value of this paramter is zero
then a publisher pool is not used and a channel is opened/closed for each publish request.

An AMQP server may have a limit to the number of channels that can be opened for a single connection. This limit is
specified by parameter mq-max-connection-channels. If the value of
mq-publisher-channel-pool-size is greater than the value of
mq-max-connection-channels then multiple
publisher pools are created (each with its own dedicated connection) and the requests are balanced across the pools.

Subscriber Pool

Each AMQP subscription is handled synchronously. If the handler takes a long time then subsequent messages in the queue
need to wait until the previous message is processed. A subscriber pool may be configured for a given queue such that
multiple subscribers concurrently process messages from the same queue. This setting is available for the following queues:

	op-queue-pool

	mq-observer-pool

Typically, all subscriber channels are created on the same AMQP connection, although an AMQP server may
have a limit to the number of channels that can be opened for a single connection. Therefore, the limit for the number
of channels for a single connection is specified by parameter
mq-max-connection-channels. If the size of the subscriber pool
reaches this limit then a new connection is automatically opened for any new subscriber channel.

Queues

When an Orb instance starts up it creates a number of queues (if they aren’t already created) and subscribes to receive
messages from these queues. Following is a description of the queues:

orb.activity.outbox

ActivityPub activities posted to the outbox are published to the orb.activity.outbox queue
which is consumed by the outbox handler.

orb.activity.inbox

ActivityPub activities posted to the inbox are published to the orb.activity.inbox queue which
is consumed by the inbox handler.

orb.operation

Sidetree DID operations posted to the operations endpoint
are published to the orb.operation queue which is consumed by the
operation queue handler.

orb.anchor_linkset

The witness proof handler publishes anchor linksets to the orb.anchor_linkset
queue which is consumed by the anchor linkset handler.

orb.anchor

The anchor linkset handler publishes messages to the orb.anchor
queue which is consumed by the observer.

orb.did

DID messages are published to the orb.did queue which is consumed by the observer.

orb.redelivery

A message that has been NACK’ed is published to the orb.redelivery queue so that it may be
redelivered.

orb.wait

A message that has been NACK’ed and has a backoff time is published to the orb.wait queue. The message sits
in this queue for the duration of the specified backoff time, then it is automatically sent to the
orb.redeivery queue for redelivery.

Task Manager

The Task Manager is an Orb service that periodically runs tasks on one Orb instance
in the domain. A task is registered on startup with a unique ID, a run interval,
and a function to invoke at the registered interval. The Task Manager stores a permit for
each task in the orb-config database. The permit contains:

	Task ID: The unique ID of the task

	Permit Holder: The unique ID of the Orb instance that is currently responsible for running the task (a GUID that’s generated on startup)

	Status: Either idle or running

	Update Time: The last time the permit was updated (used to check the last time the task was run and the aliveness of the permit holder)

The Task Manager on each Orb instance periodically
checks the permit for each task. Different actions are taken depending on whether the Orb instance
holds the permit, as described below.

[image: ../../_images/task-manager.svg]
This Orb instance holds the permit

When it is determined that this instance is the permit holder for the task, the permit is checked for
its status: either idle or running.

Idle status

If the status of the task is idle then a check is made to see if it is time to run the task
using the registered interval for the task and the last update time.
If it is time to run the task then:

	The status of the permit is set to running

	The last update time is set to the current time

	The task is started

Running status

If the status of the task is running then the permit is updated with the current time so that
other instances still see that this instance is alive, otherwise (for long-running tasks)
other instances may think that this instance is down and attempt to acquire the permit.

Another Orb instance holds the permit

When it is determined that this instance is NOT the permit holder for the task, the health of the
permit holder is checked. If the time since the permit was updated is greater than the Task Manager’s
check interval plus the interval of the task itself,
then it is assumed that the permit holder is down and this instance attempts to take over the permit.
There is a window in which multiple instances may attempt to take over the permit at the same
time, in which case multiple instances may run the task concurrently. This should only happen once
during a takeover event, since the last instance to update the permit is responsible for all future
runs.

Tasks

Tasks registered with the Task Manager must be tolerant of the fact that multiple server instances
may run the task concurrently. This may happen when a permit holder goes down and
other instances attempt to take over the permit (as described in the section above). Following is a
description of the registered tasks:

Database Expiry

The database expiry task periodically deletes expired data from multiple databases. The database expiry
service allows multiple databases to be registered for expired data checks. A database is registered
with a database name and a tag that contains the expiration time of the document. The expiry task queries
for all documents from the registered databases where the expiry time has been reached, and
deletes these documents. The scheduled run period is set with the startup
parameter data-expiry-check-interval.

Activity Sync

The Activity Sync task periodically synchronizes anchor activities from the
inboxes and outboxes of its followers and the domains that it’s following. The scheduled period is set
with the startup parameter sync-interval.

Anchor Status Monitor

This task monitors the status of an anchor event that is waiting for proofs from witnesses.
The task checks if enough proofs have been received for an anchor event and, if not, a new
set of witnesses is solicited for proofs. The scheduled period for this task is set with
parameter, anchor-status-monitoring-interval.

VCT Monitor

The VCT monitor task checks if a proof that was returned by a witness
(in an Accept [https://trustbloc.github.io/activityanchors/#accept-anchor-activity]
activity) was actually added to the witness’s ledger. The scheduled period
for this task is set with parameter,
vct-monitoring-interval.

Operation Queue Monitor

The operation queue monitor task monitors the operation queue to ensure that if a server
instance goes down then another instance processes the queued operations
(see the operation queue recovery page for details). The scheduled period is set
with parameter, task-manager-check-interval.

Onboarding and Recovery

Onboarding and recovery of a domain are closely related. Onboarding takes place when a new domain comes online.
This means that it starts to follow other domains, asks other
domains to be its witness, and potentially other domains
will want to follow it and ask it to be a witness. Recovery is the process that takes place
after a domain has been offline for a while and needs to catch up with the activities
posted by the domains it’s following while it was down. Recovery could also mean that a
domain’s database had to be restored from a backup and it needs to recover
data that was lost and also catch up with the missed activities from the domains that it is
following.

Activity Sync Task

When an Orb server starts up, an activity sync task is registered with the
Task Manager. This task periodically
synchronizes anchor activities (Create [https://trustbloc.github.io/activityanchors/#create-activity]
and Announce [https://trustbloc.github.io/activityanchors/#announce-activity]) with the
domains that the local domain is following and also processes any missing anchor
activities (Creates [https://trustbloc.github.io/activityanchors/#create-activity]
that were posted to the domains followers).

The activity sync task is run on one server instance in a domain. It first reads from the
Inbox of each of its followers to
ensure that the Create activities that it had posted to its followers are actually stored locally.
If not, it pulls the data from its followers and processes
the anchor event. The task then reads the Outbox
of the domains that it is following and processes all Create and
Announce activities.

When processing an activity, the timestamp of when the activity was published is used to determine
the age of the activity. The activity is not processed unless its age has reached the configured
minimum activity age. This is done to minimize
the possibility of both the Inbox and the activity sync task concurrently
processing the anchor event. (Even though the system is tolerant of this situation, it still has an impact
on performance.)

Once processing has finished, the activity-sync database is updated with the last page and index
of each domain that it processed so that when the task runs again, processing starts from where
it left off.

[image: ../../_images/ap-activity-sync.svg]

Databases

Permanent Data

The following databases store data permanently, i.e. the data (for now) is never deleted.

activity

The activity database stores ActivityPub activities that are posted to the
outbox or received in the
inbox.

activity-ref

The activity-ref database stores references to the activity database using a RefType tag so that
a query may be performed for activities referenced by a certain type. For example, setting the RefType
tag to OUTBOX ensures that the activity is included in the result set for a query of activities
in the outbox.

Valid values for RefType are:

	INBOX

	OUTBOX

	PUBLIC_OUTBOX

	FOLLOWER

	FOLLOWING

	WITNESS

	WITNESSING

	LIKE

	LIKED

	SHARE

	ANCHOR_LINKSET

anchor-ref

The anchor_ref database contains the hashlinks (with metadata) of where an anchor
(tagged with anchorHash) may be resolved. This includes the local domain, remote domains, and IPFS.

cas

The cas database stores content addressable objects. This database is only used if Orb is configured
with the local CAS type.

didanchor

The didanchor database stores the latest anchor hash of a DID suffix.

ldcontexts

The ldcontexts database stores JSON linked-data (JSON-LD) contexts.

log-monitor

The log-monitor database is used to manage the list of logs that domain is following.

log-entry

The log-entry database is used to store the entries of observed logs.

operation

The operation database stores Sidetree operations.

orb-config

The orb-config database stores configuration data.

remoteproviders

TBD

verifiable

The verifiable database store verifiable credentials.

Temporary Data

The following databases (for the most part) contain temporary data that is used only during processing
of a batch of operations. The data is deleted after the batch has been processed.

anchor-link

The anchor-link database stores anchor links (of an anchor Linkset) that have not yet been witnessed.
After a sufficient number of proofs have been received for the anchor (according to
witness policy) the anchor link is deleted.

anchor-status

The anchor-status database stores the status of an anchor while it is waiting for witnesses.
The status is either in-process or completed. After a sufficient number of proofs have been
received for the anchor (according to witness policy) the
anchor entry is deleted.

activity-sync

The activity-sync database stores the page number and index of the last activity
that was synchronized for each of the domains that are followed. This information is used by the
Activity Sync task.

proof-monitor

The proof-monitor database keeps track of the proofs that were received by other domains and ensures
that the proofs were added to their VCTs.

operation-queue

The operation-queue database contains the operations posted to the operation queue.
Operations are deleted after they have been processed.

unpublished-operation

The unpublished-operation database contains the operations that were posted by a client via the
operations endpoint but have not yet been anchored.
Operations are deleted from this database after they have been anchored.

witness

The witness database stores the URIs of the domains that were asked for proofs for a given anchor.
The witness URIs are deleted from this database after the anchor has been processed.

public-key

The public-key database stores the public keys of witnesses that are used to verify the proofs in anchor
credentials signed by the witnesses. When the Observer verifies a proof, it first looks in
this database for a public key. If the public key is not found then it is retrieved from the witness and then stored
in this database.

Witness Policy

An administrator can define and configure witness policy per domain. If configured the witness policy
is stored into configuration database “orb-config” under “witness-policy” key.
The witness policy is cached on the server with periodic cache updates from the database.
Default witness policy cache expiry period has been set to 30 seconds.

Witness Policy Rules

OutOf

OutOf rule defines minimum number of witnesses required to provide proof in order to satisfy witness policy.

Syntax:
OutOf(minimumWitnesses,witnessType)

First parameter must be zero or positive integer and it denotes minimum number of witnesses required
to provide proof in order to satisfy witness policy.

Second parameter denotes type of witness. Supported witness types are batch and system.

Example:
OutOf(2,system)

This rule means that proofs from at least 2 system witnesses are required in order to satisfy witness policy.

MinPercent

MinPercent rule defines minimum percent of witnesses required to provide proof in order to satisfy witness policy.

Syntax:
MinPercent(minimumWitnessesPercent,witnessType)

First parameter must be an integer between 0 and 100 and it denotes minimum percent of witnesses
required to provide proof in order to satisfy witness policy.

Second parameter denotes type of witness. Supported witness types are batch and system.

Example:
MinPercent(50,batch)

This rule means that proofs from at least 50% of batch witnesses are required in order to satisfy witness policy.

LogRequired

LogRequired rule means that all witnesses have to be configured with supported witness log.

Syntax:
LogRequired

Combining Rules

Rules can be combined by using operators. Supported operators: AND, OR.

Example:
MinPercent(50,batch) AND MinPercent(50,system)

This rule means that proofs from at least 50% of batch witnesses and proofs from at least 50% of system witnesses
are required in order to satisfy witness policy.

Additional examples:
MinPercent(50,batch) OR MinPercent(50,system)
OutOf(3,system) AND OutOf(1,batch) LogRequired

Default Policy

If the witness policy has not been configured the system will default to 100% batch and 100% system witnesses policy.

Configuring Witness Policy

Witness policy can be configured by posting witness configuration rule to domain endpoint “/policy”.

Key Management

Orb uses two crypto keys to do the following operations:

	Sign HTTP requests between orb servers.

	Sign VC.

Establish orb key

There are 2 ways to establish the orb key:

	Import a pre-existing private key and ID into KMS at Orb startup via Orb configuration

	Prior to orb startup, create a new key within KMS and establish orb configuration

Add pre-existing private key to orb configuration

When the Orb server starts, it will import the private key and ID into KMS sever.

Steps to create VC sign key

	Create ed25519 private key.

	Configure ORB_VC_SIGN_PRIVATE_KEYS with value of ed25519 private key as base64.

Example VC sign key

ORB_KMS_ENDPOINT=https://orb.kms
ORB_VC_SIGN_PRIVATE_KEYS=orbkey1=9kRTh70Ut0MKPeHY3Gdv/pi8SACx6dFjaEiIHf7JDugPpXBnCHVvRbgdzYbWfCGsXdvh/Zct+AldKG4bExjHXg
ORB_VC_SIGN_ACTIVE_KEY_ID=orbkey1

Steps to create HTTP sign key

	Create ed25519 private key.

	Configure ORB_PRIVATE_KEY with value of ed25519 private key as base64.

Example HTTP sign key

ORB_KMS_ENDPOINT=https://orb.kms
ORB_HTTP_SIGN_PRIVATE_KEY=orbkey1=9kRTh70Ut0MKPeHY3Gdv/pi8SACx6dFjaEiIHf7JDugPpXBnCHVvRbgdzYbWfCGsXdvh/Zct+AldKG4bExjHXg
ORB_HTTP_SIGN_ACTIVE_KEY_ID=orbkey1

Create private key in KMS and configure orb to use

Key need to be created in KMS before orb server starting.

Steps to create VC sign key

	Create KMS keystore using KMS cli.

	Create ed25519 key in KMS using KMS cli.

	Configure ORB_VC_SIGN_KEYS_ID with key id.

Example VC sign key

ORB_KMS_STORE_ENDPOINT=https://orb.kms/keystore
ORB_VC_SIGN_KEYS_ID=orbkey1
ORB_VC_SIGN_ACTIVE_KEY_ID=orbkey1

Steps to create HTTP sign key

	Create KMS keystore using KMS cli.

	Create ed25519 key in KMS using KMS cli.

	Configure ORB_HTTP_SIGN_ACTIVE_KEY_ID with key id.

Example HTTP sign key

ORB_KMS_STORE_ENDPOINT=https://orb.kms/keystore
ORB_HTTP_SIGN_ACTIVE_KEY_ID=orbkey1

Storing

The keys will be managed and stored in KMS please refer to this doc for more details.
Orb is using Scenario 1 in kms doc.

Rotation

There is two ways to rotate orb key:

	Import a pre-existing private key and id into KMS at Orb startup via Orb configuration

	Prior to orb startup, create a new key within KMS and establish orb configuration

Add pre-existing private key to orb configuration

When you need to rotate the key just add the new private key to orb configuration.

Steps to rotate VC sign key

	Create new ed25519 private key.

	Configure ORB_VC_SIGN_PRIVATE_KEYS with new value of ed25519 private key as base64.

	Change the active key id to new key id.

Example VC sign key

ORB_KMS_ENDPOINT=https://orb.kms
ORB_VC_SIGN_PRIVATE_KEYS=orbkey1=9kRTh70Ut0MKPeHY3Gdv/pi8SACx6dFjaEiIHf7JDugPpXBnCHVvRbgdzYbWfCGsXdvh/Zct+AldKG4bExjHXg,orbkey2=bwpFhQXFhhPQCkAt3fmj9t05hnuwVqiUkBjaXV9QBeisrjoFhUEcIzVOH6QoIXNptWZtOZNdEvlLAf6bZa8opg
ORB_VC_SIGN_ACTIVE_KEY_ID=orbkey2

Steps to rotate HTTP sign key

	Create new ed25519 private key.

	Replace old key in ORB_HTTP_SIGN_PRIVATE_KEY with new value of ed25519 private key as base64.

	Change the active key id to new key id.

Example HTTP sign key

ORB_KMS_ENDPOINT=https://orb.kms
ORB_HTTP_SIGN_PRIVATE_KEYS=orbkey2=bwpFhQXFhhPQCkAt3fmj9t05hnuwVqiUkBjaXV9QBeisrjoFhUEcIzVOH6QoIXNptWZtOZNdEvlLAf6bZa8opg
ORB_HTTP_SIGN_ACTIVE_KEY_ID=orbkey2

Create private key in KMS and configure orb to use

When you need to rotate the key just create new key in KMS and add key id to orb configuration.

Steps to rotate VC sign key

	Create new ed25519 key in KMS using KMS cli.

	Configure ORB_VC_SIGN_KEYS_ID with key id.

	Change the active key id to new key id.

Example VC sign key

ORB_KMS_STORE_ENDPOINT=https://orb.kms/keystore
ORB_VC_SIGN_KEYS_ID=orbkey1,orbkey2
ORB_VC_SIGN_ACTIVE_KEY_ID=orbkey2

Steps to rotate HTTP sign key

	Create new ed25519 key in KMS using KMS cli.

	Change the active key id to new key id.

Example HTTP sign key

ORB_KMS_STORE_ENDPOINT=https://orb.kms/keystore
ORB_HTTP_SIGN_ACTIVE_KEY_ID=orbkey2

Distribute

The key will be managed and stored in KMS please refer to this doc for more details.
Orb is using Scenario 1 in kms doc.

Impact of loss

	Http signatures it’s short-lived no impact of loss.

	Can’t verify VC signed before loss.

Impact of compromise

	TBD

Metrics

An Orb server records performance metrics at each subsystem if the startup parameter metrics-provider-name
is set. Below are the metrics defined at each subsystem.

ActivityPub

The ActivityPub subsystem deals with server to server communications.

activitypub_outbox_post_seconds

The time (in seconds) that it takes to post a message to the outbox.

activitypub_outbox_resolve_inboxes_seconds

The time (in seconds) that it takes to resolve the inboxes of the destination URLs when posting to the outbox.

activitypub_inbox_handler_seconds

The time (in seconds) that it takes to handle an activity posted to the inbox.

activitypub_outbox_count

The number of activities posted to the outbox.

AnchorEvent

The AnchorEvent subsystem is responsible for gathering proofs for an AnchorEvent from multiple witnesses.

anchor_write_seconds

The time (in seconds) that it takes to write an anchor credential and post an ‘Offer’ activity.

anchor_witness_seconds

The time (in seconds) that it takes for a verifiable credential to gather proofs from all required witnesses (according to witness policy). The start time is when the verifiable credential is issued and the end time is the time that the witness policy is satisfied.

anchor_process_witnessed_seconds

The time (in seconds) that it takes to process a witnessed anchor credential by publishing it to the Observer and posting a Create activity.

anchor_write_build_cred_seconds

The time (in seconds) that it takes to build a credential (inside the write anchor function).

anchor_write_get_witnesses_seconds

The time (in seconds) that it takes to get witnesses (inside the write anchor function).

anchor_write_sign_cred_seconds

The time (in seconds) that it takes to sign the credential (inside the write anchor function).

anchor_write_post_offer_activity_seconds

The time (in seconds) that it takes to post an offer activity (inside the write anchor function).

anchor_write_get_previous_anchor_get_bulk_seconds

The time (in seconds) that it takes to perform a database ‘bulk get’ (inside the get previous anchor function).

anchor_write_get_previous_anchor_seconds

The time (in seconds) that it takes to get the previous anchor.

anchor_write_sign_with_local_witness_seconds

The time (in seconds) that it takes to sign with the local witness key.

anchor_write_sign_with_server_key_seconds

The time (in seconds) that it takes to sign with a server key.

anchor_write_sign_local_witness_log_seconds

The time (in seconds) that it takes to witness the log (inside the sign local function).

anchor_write_sign_local_watch_seconds

The time (in seconds) that it takes to add the verifiable credential to the VCT monitoring service (inside the sign local function).

anchor_write_resolve_host_meta_link_seconds

The time (in seconds) that it takes to resolve a host meta link.

anchor_write_store_seconds

The time (in seconds) that it takes to store an anchor event.

Operation Queue

The Operation Queue is an AMQP [https://www.amqp.org/] implementation of a Sidetree [https://identity.foundation/sidetree/spec/] operation queue. Operations are posted to the queue and a batch is cut when the queue size reaches the maximum batch size (configured in the Sidetree protocol) or whwn a batch timeout occurs.

opqueue_add_operation_seconds

The time (in seconds) that it takes to add an operation to the queue.

opqueue_batch_cut_seconds

The time (in seconds) that it takes to cut an operation batch. The duration is from the time that the first operation was added to the time that the batch was cut.

opqueue_batch_rollback_seconds

The time (in seconds) that it takes to roll back an operation batch (in case of a transient error). The duration is from the time that the first operation was added to the time that the batch was cut.

opqueue_batch_size

The size of a cut batch.

opqueue_process_anchor_seconds

The time (in seconds) that it takes for the Observer to process an anchor credential.

opqueue_process_did_seconds

The time (in seconds) that it takes for the Observer to process a DID.

Content Addressable Storage

The Content Addressable Store (CAS) is either implemented as a local store or using IPFS [https://ipfs.io/].

cas_write_seconds

The time (in seconds) that it takes to write a document to CAS.

cas_resolve_seconds

The time (in seconds) that it takes to resolve a document from CAS.

cas_cache_hit_count

The number of times a CAS document was retrieved from the cache.

cas_read_seconds

The time (in seconds) that it takes to read a document from the CAS storage.

Document

The Document metrics measure times for posting create and update Sidetree operations, as well as resolving DID documents.

document_create_update_seconds

The time (in seconds) it takes the REST handler to process a create/update operation.

document_resolve_seconds

The time (in seconds) it takes the REST handler to resolve a document.

Database

Database metrics record the times for reads, writes, bulk writes, etc.

db_put_seconds

The time (in seconds) it takes the DB to store data.

db_get_seconds

The time (in seconds) it takes the DB to retrieve data by primary key.

db_get_tags_seconds

The time (in seconds) it takes the DB to get tags.

db_get_bulk_seconds

The time (in seconds) it takes the DB to get bulk.

db_query_seconds

The time (in seconds) it takes to query for data.

db_delete_seconds

The time (in seconds) it takes to delete data.

db_batch_seconds

The time (in seconds) it takes to perform a batch update.

Verifiable Credential Transparency

The Verifiable Credential Transparency (VCT) subsystem records verifiable credentials to a ledger (backed by Google Trillian [https://github.com/google/trillian]).

vct_witness_add_proof_vct_nil_seconds

The time (in seconds) it takes the add proof when vct is nil in witness.

vct_witness_add_vc_seconds

The time (in seconds) it takes the add vc in witness.

vct_witness_add_proof_seconds

The time (in seconds) it takes the add proof in witness.

vct_witness_webfinger_seconds

The time (in seconds) it takes web finger in witness.

vct_witness_verify_vct_signature_seconds

The time (in seconds) it takes verify vct signature in witness.

vct_witness_add_proof_parse_credential_seconds

The time (in seconds) it takes the parse credential in add proof.

vct_witness_add_proof_sign_seconds

The time (in seconds) it takes the sign in add proof.

Signer

Following are metrics for the signer, which is either using a local key or KMS [https://github.com/trustbloc/kms].

signer_get_key_seconds

The time (in seconds) it takes to get the key.

signer_sign_seconds

The time (in seconds) it takes to sign.

signer_add_linked_data_proof_seconds

The time (in seconds) it takes to add linked data proof.

Resolver

The document resolver resolves a DID document, either from local store, or from the anchor origin.

resolver_resolve_document_locally_seconds

The time (in seconds) it takes to resolve the document locally.

resolver_get_anchor_origin_endpoint_seconds

The time (in seconds) it takes to get endpoint information from the anchor origin.

resolve_document_from_anchor_origin_seconds

The time (in seconds) it takes to resolve a document from the anchor origin.

resolver_resolve_document_from_create_document_store_seconds

The time (in seconds) it takes to resolve a document from the create document store.

resolver_delete_document_from_create_document_store_seconds

The time (in seconds) it takes the resolver to delete a document from the create document store.

resolver_verify_cid_seconds

The time (in seconds) it takes to verify a CID in the anchor graph.

resolver_request_discovery_seconds

The time (in seconds) it takes to request DID discovery.

Decorator

The decorator is invoked by the core Sidetree [https://github.com/trustbloc/sidetree-core-go] library. It verifies (from the anchor origin) that the local domain has the latest operations.

decorator_decorate_seconds

The time (in seconds) it takes the decorator to pre-process the document operation.

decorator_processor_resolve_seconds

The time (in seconds) it takes the processor to resolve a document before accepting the document operation.

decorator_get_ao_endpoint_and_resolve_from_ao_seconds

The time (in seconds) it takes to resolve a document from the anchor origin before accepting the document operation.

Operation Store

The operation store contains published and unpublished operations.

operations_put_unpublished_operation_seconds

The time (in seconds) it takes to store an unpublished operation.

operations_get_unpublished_operations_seconds

The time (in seconds) it takes to get an unpublished operations for a given suffix.

operations_calculate_unpublished_operation_key_seconds

The time (in seconds) it takes to calculate a key for an unpublished operation.

operations_put_published_operations_seconds

The time (in seconds) it takes to store published operations.

operations_get_published_operations_seconds

The time (in seconds) it takes to get published operations for a given suffix.

Sidetree Core

The follow metrics are produced by the core Sidetree [https://github.com/trustbloc/sidetree-core-go] library.

core_process_operation_seconds

The time (in seconds) it takes to process a DID operation.

core_get_protocol_version_seconds

The time (in seconds) it takes to get the protocol version (in process operation).

core_parse_operation_seconds

The time (in seconds) it takes to parse an operation in (in process operation).

core_validate_operation_seconds

The time (in seconds) it takes to validate an operation (in process operation).

core_decorate_operation_seconds

The time (in seconds) it takes to decorate an operation (in process operation).

core_add_unpublished_operation_seconds

The time (in seconds) it takes to add an unpublished operation to the store (in process operation).

core_add_operation_to_batch_seconds

The time (in seconds) it takes to add an operation to the batch (in process operation).

core_get_create_operation_result_seconds

The time (in seconds) it takes to get a create operation result (in process operation).

core_http_create_update_seconds

The time (in seconds) it takes for a create/update HTTP call.

core_http_resolve_seconds

The time (in seconds) it takes for a resolve HTTP call.

orb_core_cas_write_size

The size of the data written to CAS.

Verifiable Credential Transparency (VCT)

	Introduction

	Log configuration

	Log Monitoring

	REST Endpoints

	Startup Parameters

	Rotate VCT logs

Introduction

The Verifiable Credential Transparency (VCT) Witness ledger is based on certificate transparency
RFC6962 [https://www.rfc-editor.org/rfc/rfc6962].
VCT logs are append-only ledgers of anchor credentials.
Because they’re distributed and independent,
anyone can query them to see what Anchor Credentials have been included and when.
Because they’re append-only, they are verifiable by Monitors.
VCT log may be named to enable periodical rollover.

Logs are cryptographically monitored by Orb node.
Monitors cryptographically check that Anchor Credential have been included in VCT log.

Orb specification extended RFC6962 [https://www.rfc-editor.org/rfc/rfc6962] to include Verifiable Credential (VC) [https://trustbloc.github.io/did-method-orb/#bib-vc-data-model] objects.

Add Verifiable Credential Flow

VCT node will validate verifiable credential and add it to Trillian log.

[image: ../../_images/add-vc.svg]See add-vc REST endpoint for more information.

VCT Monitoring

Monitors cryptographically check if verifiable credentials have been included in logs. They
can also monitor log for consistency. Monitors can be set up and run by anyone.

VCT node supports the following monitoring API:

Get Signed Tree Head (STH)

Retrieve latest Signed Tree Head as described in RFC6962 [https://datatracker.ietf.org/doc/html/rfc6962#section-4.3].
See get-sth REST endpoint for more information.

Get Signed Tree Head (STH) Consistency

Retrieve Merkle Consistency Proof between Two Signed Tree Heads
as per RFC6962 [https://datatracker.ietf.org/doc/html/rfc6962#section-4.4].

See get-sth-consistency REST endpoint for more information.

Get Entries

Retrieve entries from log as per RFC6962 [https://datatracker.ietf.org/doc/html/rfc6962#section-4.6].

See get-entries REST endpoint for more information.

Retrieve Entry and Proof from Log

Retrieve entry and Merkle audit proof from log as per RFC6962 [https://datatracker.ietf.org/doc/html/rfc6962#section-4.8].

See get-entry-and-proof REST endpoint for more information.

Retrieve Merkle Audit Proof from Log by Leaf Hash

Retrieve Merkle audit proof by leaf hash from log as per RFC6962 [https://datatracker.ietf.org/doc/html/rfc6962#section-4.5].

See get-proof-by-hash REST endpoint for more information.

VCT Discovery and Administration

WebFinger

Retrieve discovery information about VCT log.

See .well-known/webfinger REST endpoint for more information.

Get Issuers

Retrieves log issuers (if configured). If the log issuer list has been configured for the log
then Verifiable Credential issuer ID has to be present in the log’s issuer list
in order to add Verifiable Credential to the log.

See get-issuers REST endpoint for more information.

Log configuration

An administrator can configure log per domain. When configured the log URL
is stored into configuration database “orb-config” under “log-url” key.
The log URL is cached on the server with periodic cache updates from the database.
Default log URL cache expiry period has been set to 1 minute.

Configuring log URL

Log URL can be configured by posting log URL to domain endpoint “/log”.

Retrieve log URL

Log URL can be retrieved by issuing GET to domain endpoint “/log”.

Log Monitoring

Orb server will periodically invoke log monitoring service that
will watch logs for consistency and check that they behave correctly.
In order to watch logs, the monitoring service follows these steps for each log:

	Fetch the current signed tree head(STH).

	Verify the STH signature.

If the service is processing log for the first time and the log is not empty:

	Fetch all the entries in the tree corresponding to the STH.

	Confirm that the tree made from the fetched entries produces the same hash as that in the STH.

If the service has already encountered this log and log’s STH has changed since last check:

	Fetch a consistency proof for the new STH with the previous STH.

	Verify the consistency proof.

Upon successful STH signature and consistency verification, log monitoring service will
save current STH for each domain.

The service can be configured to retrieve and store all log entries during log monitoring. See Log Entries Store Enabled Parameter.

For more details about log monitoring see: https://datatracker.ietf.org/doc/html/rfc6962#section-5.3.

REST Endpoints

Add Anchor Credential to Log

Endpoint: “/{alias}/v1/add-vc”

Add Anchor Credential to log.

Parameter: Anchor Credential.

Example

POST /maple2020/v1/add-vc HTTP/1.1
Host: witness.com

Request:

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/security/suites/jws-2020/v1",
 "https://w3id.org/security/suites/ed25519-2020/v1"
],
 "credentialSubject": "hl:uEiDKH_3UYP_4_F8BAV7mOPa6IDrTMuMShNNwHVyfam7CBg",
 "id": "https://orb.domain1.com/vc/41ae2e2f-4974-4425-ac0e-a1b14b2cfea3",
 "issuanceDate": "2022-05-19T22:16:19.7471831Z",
 "issuer": "https://orb.domain1.com",
 "type": "VerifiableCredential"
}

Output:

sct_version: The version of the SignedCertificateTimestamp structure.

id: The log ID, base64 encoded.

timestamp: The SCT timestamp, in decimal.

extensions: An opaque type for future expansion.

signature: The SCT signature, base64 encoded.

{
 "svct_version": 0,
 "id": "c0JZOeGbBoFbJYTJpin68J2IhCHr1muAEi4QCY7cTko=",
 "timestamp": 1652998579753,
 "extensions": "",
 "signature": "eyJhbGdvcml0aG0iOnsic2lnbmF0dXJlIjoiRUNEU0EiLCJ0eXBlIjoiRUNEU0FQMjU2REVSIn0sInNpZ25hdHVyZSI6Ik1FVUNJUURJdFJRZ1ZKZFJTQytIQjN5NFVqb2x5UnNvcW5lR0NHUHFaTXNDdjBOT25BSWdTMjFUZzdaNC93bDZvZm4yZVRmeG9aL1ZZMHhUdHc4R3I1MlVSa0UwVVljPSJ9"
}

Get Signed Tree Head (STH)

Endpoint: “/{alias}/v1/get-sth”

Retrieve latest Signed Tree Head as described in RFC6962 [https://datatracker.ietf.org/doc/html/rfc6962#section-4.3]

Example

GET /maple2020/v1/get-sth HTTP/1.1
Host: witness.com

Output:

{
 "tree_size": 24,
 "timestamp": 1652906464409,
 "sha256_root_hash": "E2HaBxp1VbZg1Mx/OSMeDSo/94yKXY1+cD0UzoH1kIk=",
 "tree_head_signature": "eyJhbGdvcml0aG0iOnsic2lnbmF0dXJlIjoiRUNEU0EiLCJ0eXBlIjoiRUNEU0FQMjU2REVSIn0sInNpZ25hdHVyZSI6Ik1FVUNJUURRTk1UQ2tqVWxOZTgwU090bUErRmFaZG5wWGEvR3BQSzVXdWpETmFlc2dnSWdPRDd4Q3VYVWR4OWVOWVlTeTM5K2gzL0htUkE0dEIyVlVHYkZZOUZQT0RVPSJ9"
}

Get Signed Tree Head (STH) Consistency

Endpoint: “/{alias}/v1/get-sth-consistency?first=5&second=10

Retrieve Merkle Consistency Proof between Two Signed Tree Heads
as per RFC6962 [https://datatracker.ietf.org/doc/html/rfc6962#section-4.4].

Parameters:

first: The tree_size of the first tree

second: The tree_size of the second tree

Both tree sizes must be from existing v1 STHs (Signed Tree Heads).

Example

http://witness.com/maple2020/v1/get-sth-consistency?first=20&second=23

GET /maple2020/v1/get-sth-consistency?first=20&second=23 HTTP/1.1
Host: witness.com

Output:

consistency: An array of Merkle Tree nodes, base64 encoded.

{
 "consistency": [
 "a7jghQovOhwnucOdJLbPD/I/OoiY+qprT/mk+LVmeL4=",
 "Ml0LmRpcONX42qwxHAb/qw3rFrhqmEH/Bdw5rMGMedw=",
 "M/Qu3X7+iS23AWUrgU+plLBRUi3WDHcodMV2+oUcQbM="
]
}

Get Entries

Endpoint: “/{alias}/v1/get-entries?start=0&end=3”

Retrieve entries from log as per RFC6962 [https://datatracker.ietf.org/doc/html/rfc6962#section-4.6].

Parameters:

start: 0-based index of first entry to retrieve

end: 0-based index of last entry to retrieve

Example

GET /maple2020/v1/get-entries?start=0&end=3 HTTP/1.1
Host: witness.com

Output:

entries: An array of objects, each consisting of

leaf_input: The base64-encoded MerkleTreeLeaf structure.

extra_data: The base64-encoded unsigned data pertaining to the log entry.

{
 "entries": [
 {
 "leaf_input": "eyJ2ZXJzaW9uIjowLCJsZWFmX3R5cGUiOjEwMCwidGltZXN0YW1wZWRfZW50cnkiOnsidGltZXN0YW1wIjoxNjUyOTA2MzY1NTYzLCJlbnRyeV90eXBlIjoxMDAsInZjX2VudHJ5IjoiZXlKQVkyOXVkR1Y0ZENJNld5Sm9kSFJ3Y3pvdkwzZDNkeTUzTXk1dmNtY3ZNakF4T0M5amNtVmtaVzUwYVdGc2N5OTJNU0lzSW1oMGRIQnpPaTh2ZHpOcFpDNXZjbWN2YzJWamRYSnBkSGt2YzNWcGRHVnpMMnAzY3kweU1ESXdMM1l4SWl3aWFIUjBjSE02THk5M00ybGtMbTl5Wnk5elpXTjFjbWwwZVM5emRXbDBaWE12WldReU5UVXhPUzB5TURJd0wzWXhJbDBzSW1OeVpXUmxiblJwWVd4VGRXSnFaV04wSWpvaWFHdzZkVVZwUkd4cFZuZHVOVTFWTW1oSlZUTjBSbmRWTUZaVFZrcEhNVzl5Wm1wUFdWQTNPSFZoZG1vME1GSTBOVUVpTENKcFpDSTZJbWgwZEhCek9pOHZiM0ppTG1SdmJXRnBiakV1WTI5dEwzWmpMMlJrT1RVMU16RXlMV1kyTnprdE5EYzFZaTFpTlRrM0xUVmlNMkV5WldZNE5EUmlaaUlzSW1semMzVmhibU5sUkdGMFpTSTZJakl3TWpJdE1EVXRNVGhVTWpBNk16azZNalV1TlRVeE5EYzBORm9pTENKcGMzTjFaWElpT2lKb2RIUndjem92TDI5eVlpNWtiMjFoYVc0eExtTnZiU0lzSW5SNWNHVWlPaUpXWlhKcFptbGhZbXhsUTNKbFpHVnVkR2xoYkNKOSIsImV4dGVuc2lvbnMiOm51bGx9fQ==",
 "extra_data": "bnVsbA=="
 },
 {
 "leaf_input": "eyJ2ZXJzaW9uIjowLCJsZWFmX3R5cGUiOjEwMCwidGltZXN0YW1wZWRfZW50cnkiOnsidGltZXN0YW1wIjoxNjUyOTA2MzcxNTQxLCJlbnRyeV90eXBlIjoxMDAsInZjX2VudHJ5IjoiZXlKQVkyOXVkR1Y0ZENJNld5Sm9kSFJ3Y3pvdkwzZDNkeTUzTXk1dmNtY3ZNakF4T0M5amNtVmtaVzUwYVdGc2N5OTJNU0lzSW1oMGRIQnpPaTh2ZHpOcFpDNXZjbWN2YzJWamRYSnBkSGt2YzNWcGRHVnpMMnAzY3kweU1ESXdMM1l4SWl3aWFIUjBjSE02THk5M00ybGtMbTl5Wnk5elpXTjFjbWwwZVM5emRXbDBaWE12WldReU5UVXhPUzB5TURJd0wzWXhJbDBzSW1OeVpXUmxiblJwWVd4VGRXSnFaV04wSWpvaWFHdzZkVVZwUTFSa1FXOVVUR1pmZGxwemVFUnhNblV0ZVcxdlRsOWZOMWxUWldKVGFHOXVSMGhNTkRSaGJsSm9Ua0VpTENKcFpDSTZJbWgwZEhCek9pOHZiM0ppTG1SdmJXRnBiakV1WTI5dEwzWmpMMkZsTkRGbE1URTRMVE5oTWpVdE5HVXhOQzA1TW1VMExUQmxaVGc1TldWak1UTTFaaUlzSW1semMzVmhibU5sUkdGMFpTSTZJakl3TWpJdE1EVXRNVGhVTWpBNk16azZNekV1TlRNMk16TTVORm9pTENKcGMzTjFaWElpT2lKb2RIUndjem92TDI5eVlpNWtiMjFoYVc0eExtTnZiU0lzSW5SNWNHVWlPaUpXWlhKcFptbGhZbXhsUTNKbFpHVnVkR2xoYkNKOSIsImV4dGVuc2lvbnMiOm51bGx9fQ==",
 "extra_data": "bnVsbA=="
 },
 {
 "leaf_input": "eyJ2ZXJzaW9uIjowLCJsZWFmX3R5cGUiOjEwMCwidGltZXN0YW1wZWRfZW50cnkiOnsidGltZXN0YW1wIjoxNjUyOTA2MzczNDc1LCJlbnRyeV90eXBlIjoxMDAsInZjX2VudHJ5IjoiZXlKQVkyOXVkR1Y0ZENJNld5Sm9kSFJ3Y3pvdkwzZDNkeTUzTXk1dmNtY3ZNakF4T0M5amNtVmtaVzUwYVdGc2N5OTJNU0lzSW1oMGRIQnpPaTh2ZHpOcFpDNXZjbWN2YzJWamRYSnBkSGt2YzNWcGRHVnpMMnAzY3kweU1ESXdMM1l4SWl3aWFIUjBjSE02THk5M00ybGtMbTl5Wnk5elpXTjFjbWwwZVM5emRXbDBaWE12WldReU5UVXhPUzB5TURJd0wzWXhJbDBzSW1OeVpXUmxiblJwWVd4VGRXSnFaV04wSWpvaWFHdzZkVVZwUW5wUmNHUkZaMHBLYmxjMFZXaFphMHRJVm5aNU9IVnZlSHBvV2xjM1gwWXlMVXhCZVdkbmQyd3dXV2NpTENKcFpDSTZJbWgwZEhCek9pOHZiM0ppTG1SdmJXRnBiakV1WTI5dEwzWmpMMlJtWXpBNU9EQTBMV1UyWVRNdE5EY3paUzFpTkRsaExUbGhZamN4TUdOaU9EUmpZU0lzSW1semMzVmhibU5sUkdGMFpTSTZJakl3TWpJdE1EVXRNVGhVTWpBNk16azZNek11TkRjeE5Ea3dPVm9pTENKcGMzTjFaWElpT2lKb2RIUndjem92TDI5eVlpNWtiMjFoYVc0eExtTnZiU0lzSW5SNWNHVWlPaUpXWlhKcFptbGhZbXhsUTNKbFpHVnVkR2xoYkNKOSIsImV4dGVuc2lvbnMiOm51bGx9fQ==",
 "extra_data": "bnVsbA=="
 },
 {
 "leaf_input": "eyJ2ZXJzaW9uIjowLCJsZWFmX3R5cGUiOjEwMCwidGltZXN0YW1wZWRfZW50cnkiOnsidGltZXN0YW1wIjoxNjUyOTA2MzgwNTA3LCJlbnRyeV90eXBlIjoxMDAsInZjX2VudHJ5IjoiZXlKQVkyOXVkR1Y0ZENJNld5Sm9kSFJ3Y3pvdkwzZDNkeTUzTXk1dmNtY3ZNakF4T0M5amNtVmtaVzUwYVdGc2N5OTJNU0lzSW1oMGRIQnpPaTh2ZHpOcFpDNXZjbWN2YzJWamRYSnBkSGt2YzNWcGRHVnpMMnAzY3kweU1ESXdMM1l4SWl3aWFIUjBjSE02THk5M00ybGtMbTl5Wnk5elpXTjFjbWwwZVM5emRXbDBaWE12WldReU5UVXhPUzB5TURJd0wzWXhJbDBzSW1OeVpXUmxiblJwWVd4VGRXSnFaV04wSWpvaWFHdzZkVVZwUkV0M09FVnVkbWhrVTNwZllVZDJhWE5FTURGNWVVZHJjV2RDVHpSeWFIVkhWRjh6Tm5OeFdqTTNTMUVpTENKcFpDSTZJbWgwZEhCek9pOHZiM0ppTG1SdmJXRnBiakV1WTI5dEwzWmpMMlpsT0RrNE0ySmtMV1F4TldVdE5HSmlNaTA0WldRNUxXSmlNR1V3WkRVMVpXRXdPQ0lzSW1semMzVmhibU5sUkdGMFpTSTZJakl3TWpJdE1EVXRNVGhVTWpBNk16azZOREF1TlRBeU5qVTRXaUlzSW1semMzVmxjaUk2SW1oMGRIQnpPaTh2YjNKaUxtUnZiV0ZwYmpFdVkyOXRJaXdpZEhsd1pTSTZJbFpsY21sbWFXRmliR1ZEY21Wa1pXNTBhV0ZzSW4wPSIsImV4dGVuc2lvbnMiOm51bGx9fQ==",
 "extra_data": "bnVsbA=="
 }
]
}

Retrieve Entry and Proof from Log

Endpoint: “/{alias}/v1/get-entry-and-proof?leaf_index=1&tree_size=23”

Retrieve entry and Merkle audit proof from log as per RFC6962 [https://datatracker.ietf.org/doc/html/rfc6962#section-4.8].

Parameters:

leaf_index: The index of the desired entry.

tree_size: The tree_size of the tree for which the proof is desired.

Example

GET /maple2020/v1/get-entry-and-proof?leaf_index=1&tree_size=23 HTTP/1.1
Host: witness.com

Output:

leaf_input: The base64-encoded MerkleTreeLeaf structure.

extra_data: The base64-encoded unsigned data pertaining to the log entry.

audit_path: An array of base64-encoded Merkle Tree nodes proving the inclusion of entry.

{
 "leaf_input": "eyJ2ZXJzaW9uIjowLCJsZWFmX3R5cGUiOjEwMCwidGltZXN0YW1wZWRfZW50cnkiOnsidGltZXN0YW1wIjoxNjUyOTA2MzcxNTQxLCJlbnRyeV90eXBlIjoxMDAsInZjX2VudHJ5IjoiZXlKQVkyOXVkR1Y0ZENJNld5Sm9kSFJ3Y3pvdkwzZDNkeTUzTXk1dmNtY3ZNakF4T0M5amNtVmtaVzUwYVdGc2N5OTJNU0lzSW1oMGRIQnpPaTh2ZHpOcFpDNXZjbWN2YzJWamRYSnBkSGt2YzNWcGRHVnpMMnAzY3kweU1ESXdMM1l4SWl3aWFIUjBjSE02THk5M00ybGtMbTl5Wnk5elpXTjFjbWwwZVM5emRXbDBaWE12WldReU5UVXhPUzB5TURJd0wzWXhJbDBzSW1OeVpXUmxiblJwWVd4VGRXSnFaV04wSWpvaWFHdzZkVVZwUTFSa1FXOVVUR1pmZGxwemVFUnhNblV0ZVcxdlRsOWZOMWxUWldKVGFHOXVSMGhNTkRSaGJsSm9Ua0VpTENKcFpDSTZJbWgwZEhCek9pOHZiM0ppTG1SdmJXRnBiakV1WTI5dEwzWmpMMkZsTkRGbE1URTRMVE5oTWpVdE5HVXhOQzA1TW1VMExUQmxaVGc1TldWak1UTTFaaUlzSW1semMzVmhibU5sUkdGMFpTSTZJakl3TWpJdE1EVXRNVGhVTWpBNk16azZNekV1TlRNMk16TTVORm9pTENKcGMzTjFaWElpT2lKb2RIUndjem92TDI5eVlpNWtiMjFoYVc0eExtTnZiU0lzSW5SNWNHVWlPaUpXWlhKcFptbGhZbXhsUTNKbFpHVnVkR2xoYkNKOSIsImV4dGVuc2lvbnMiOm51bGx9fQ==",
 "extra_data": "bnVsbA==",
 "audit_path": [
 "40IbH54WlW/7XICpmttJmOPv4/DaRsCZDc4osAdzPxg=",
 "aaNL9DnYEGLdCjbCV72u6vZ/yBj/Mo0b5Wt7h5zdKMI=",
 "B4KHZzvpTXVOUtyI2skBE6SO8CZFcZl0hDAybAOhV/M=",
 "3yME5CgWt6xUnb3jlz10puvcZT4vRsQcxp9+dceMdrg=",
 "Verp7o4zRhZPJvIxEzCzPNPtw2ZKYj9HCYKtHpDY6RY="
]
}

Decoded leaf_input:

{
 "version": 0,
 "leaf_type": 100,
 "timestamped_entry": {
 "timestamp": 1652906371541,
 "entry_type": 100,
 "vc_entry": "eyJAY29udGV4dCI6WyJodHRwczovL3d3dy53My5vcmcvMjAxOC9jcmVkZW50aWFscy92MSIsImh0dHBzOi8vdzNpZC5vcmcvc2VjdXJpdHkvc3VpdGVzL2p3cy0yMDIwL3YxIiwiaHR0cHM6Ly93M2lkLm9yZy9zZWN1cml0eS9zdWl0ZXMvZWQyNTUxOS0yMDIwL3YxIl0sImNyZWRlbnRpYWxTdWJqZWN0IjoiaGw6dUVpQ1RkQW9UTGZfdlpzeERxMnUteW1vTl9fN1lTZWJTaG9uR0hMNDRhblJoTkEiLCJpZCI6Imh0dHBzOi8vb3JiLmRvbWFpbjEuY29tL3ZjL2FlNDFlMTE4LTNhMjUtNGUxNC05MmU0LTBlZTg5NWVjMTM1ZiIsImlzc3VhbmNlRGF0ZSI6IjIwMjItMDUtMThUMjA6Mzk6MzEuNTM2MzM5NFoiLCJpc3N1ZXIiOiJodHRwczovL29yYi5kb21haW4xLmNvbSIsInR5cGUiOiJWZXJpZmlhYmxlQ3JlZGVudGlhbCJ9",
 "extensions": null
 }
}

Retrieve Merkle Audit Proof from Log by Leaf Hash

Endpoint: “/{alias}/v1/get-proof-by-hash?tree_size=24&hash=bsmXlruDXTFrWOfFQ2WRBERc51rMk3hvRdOAROIZmHI=”

Retrieve Merkle audit proof by leaf hash from log as per RFC6962 [https://datatracker.ietf.org/doc/html/rfc6962#section-4.5].

Parameters:

hash: A base64-encoded v1 leaf hash.

tree_size: The tree_size of the tree on which to base the proof.

Example

GET /maple2020/v1/get-proof-by-hash?tree_size=24&hash=bsmXlruDXTFrWOfFQ2WRBERc51rMk3hvRdOAROIZmHI= HTTP/1.1
Host: witness.com

Output:

leaf_index: The 0-based index of the end entity corresponding to the “hash” parameter.

audit_path: An array of base64-encoded Merkle Tree nodes proving the inclusion of the entry.

{
 "leaf_index": 2,
 "audit_path": [
 "6pKexnNWd+pRegRB+0kUct/yIlPhEP8F4YASINoP3PI=",
 "KB/U4HPHLwE36ZZCcWhBhk9M24242oDPe3kJxAUkfu0=",
 "m+GAt5OxvxxX5kNBDqqHkoHJHeJxcitAzc0wJMbIlQs=",
 "GkRLjI7Sb6pkqjU63baSCyoAiqRYrBbY7Efz+cjlXY4=",
 "XuYjKQt/oygHn96E4tSJrGsT4ZqLAvlsui9TS4+6f3g="
]
}

VCT Discovery and Administration Endpoints

WebFinger

Endpoint: “/.well-known/webfinger?resource={log-id}”

Retrieve discovery information about VCT log.

Example

GET /.well-known/webfinger?resource=https://witness.com/maple2020 HTTP/1.1
Host: witness.com

Output:

{
 "subject": "https://witness.com/maple2020",
 "properties": {
 "https://trustbloc.dev/ns/ledger-type": "vct-v1",
 "https://trustbloc.dev/ns/public-key": "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEfCc/5CT+K59Dv7+r+MiVX+ARfMeFK9CwdLlicTyjoNJdhFfP4/wnVfXg+vLjrqBYFsYzgokTSTZBSk72WF1RrQ=="
 },
 "links": [
 {
 "rel": "self",
 "href": "https://witness.com/maple2020"
 }
]
}

Get Issuers

Endpoint: “/{alias}/get-issuers”

Retrieves log issuers (if configured). If the log issuer list has been configured
then Anchor Credential issuer ID has to be present in the log’s issuer list
in order to add Anchor Credential to the log.

Example

GET /maple2020/v1/get-issuers HTTP/1.1
Host: witness.com

Output:

["did:key:zUC724vuGvHpnCGFG1qqpXb81SiBLu3KLSqVzenwEZNPoY35i2Bscb8DLaVwHvRFs6F2NkNNXRcPWvqnPDUd9ukdjLkjZd3u9zzL4wDZDUpkPAatLDGLEYVo8kkAzuAKJQMr7N7"]

Health Check

Endpoint: “/healthcheck”

Returns VCT status.

Example

GET /healthcheck HTTP/1.1
Host: witness.com

Output:

{
 "current_time": "2022-05-19T17:56:54.0594632Z",
 "status": "success"
}

Metrics

Endpoint: “/metrics”

Returns VCT metrics.

Example

GET /metrics HTTP/1.1
Host: witness.com

Startup Parameters

This section enumerates the startup parameters for an VCT server. Parameters in the
Required Parameters section are required, otherwise the server will not start.
Parameters in the Optional Parameters section are optional and will use a
default value if not specified.

Required Parameters

Following are the required parameters for a VCT server.

api-host

	Arg

	Env

	–api-host

	VCT_API_HOST

URL to run the VCT instance on. Format: HostName:Port.

base-url

	Arg

	Env

	–base-url

	VCT_BASE_URL

Base URL. e.g (https://vct.com)

kms-type

	Arg

	Env

	Default

	–kms-type

	VCT_KMS_Type

	

KMS type (local,web,aws).

kms-endpoint

	Arg

	Env

	Default

	–kms-endpoint

	VCT_KMS_ENDPOINT

	

Remote KMS URL.

log-active-key-id

	Arg

	Env

	Default

	–log-active-key-id

	VCT_LOG_SIGN_ACTIVE_KEY_ID

	

Active Key ID for signing logs.

logs

	Arg

	Env

	–logs

	VCT_LOGS

A list of Trillian logs (comma separated). Format must be :@.

 Rotate VCT logs

Rotate VCT logs

Rotate VCT logs process requires new configuration for both VCT server and Orb node.

Configure VCT

Add new log to VCT logs parameter

VCT_LOGS=maple2023:rw@orb.trillian.log.server:8090,maple2022:rw@orb.trillian.log.server:8090

In order for changes to take effect an administrator has to re-start VCT server.

Configure Orb

Configuring Orb node with new log requires setting up new VCT log URL for Orb domain,
adding that new log URL to log monitoring list and removing old log URL from log monitoring list.
An administrator may want to wait some time before deactivating old log in order to allow
for all items in the old log to be processed and for log to be verified.

Rotate VCT Log Steps for Orb Node:

	configure Orb node with new VCT log URL

	add new log URL to log monitoring list

	remove old log URL from log monitoring list

Configure Orb node with new VCT log

An administrator can configure new VCT log per Orb domain by posting new log URL to /log endpoint.
See log configuration REST endpoint for more information.

POST /log HTTP/1.1
Host: orb.domain1.com
Content-Type: application/ld+json

http://orb.vct:8077/maple2023

Activate monitoring for new log

Activate monitoring of new log by posting to log-monitor REST endpoint.

POST /log-monitor HTTP/1.1
Host: orb.domain1.com

{
 "activate": [
 "http://orb.vct:8077/maple2023"
]
}

Deactivate monitoring for old log

De-activate monitoring of old log by posting to log-monitor REST endpoint.

POST /log-monitor HTTP/1.1
Host: orb.domain1.com

{
 "deactivate": [
 "http://orb.vct:8077/maple2022"
]
}

List active/inactive logs for log monitoring service

Endpoint: “/log-monitor?status=active”

Retrieve active log list for log monitoring service.

Parameters:

status: active or inactive; it defaults to active if status parameter is not provided

Example

GET /log-monitor?status=active HTTP/1.1
Host: orb.domain1.com

Output:

{
 "active": [
 {
 "log_url": "http://orb.vct:8077/maple2022",
 "sth_response": {
 "tree_size": 24,
 "timestamp": 1654869615262,
 "sha256_root_hash": "GDCyCWRPqGPtrgNtj1iFGxwSg0emoxuq/W1Dc4lEiro=",
 "tree_head_signature": "eyJhbGdvcml0aG0iOnsic2lnbmF0dXJlIjoiRUNEU0EiLCJ0eXBlIjoiRUNEU0FQMjU2REVSIn0sInNpZ25hdHVyZSI6Ik1FVUNJUUNXSEl2Z3hUZHdJWjdMdk5HVVcxZitlMW5IQ21Hc0dseGRYV0VlRy9Dckl3SWdOeWlGWTR4VDg3V1JrVkFaTHlXSkFZdjlPU2h5VWZvSU1JelJIWDNBTDRJPSJ9"
 },
 "pub_key": "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEfCc/5CT+K59Dv7+r+MiVX+ARfMeFK9CwdLlicTyjoNJdhFfP4/wnVfXg+vLjrqBYFsYzgokTSTZBSk72WF1RrQ==",
 "active": true
 },
 {
 "log_url": "http://orb.vct:8077/maple2023",
 "sth_response": {
 "tree_size": 0,
 "timestamp": 1654868145703,
 "sha256_root_hash": "47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=",
 "tree_head_signature": "eyJhbGdvcml0aG0iOnsic2lnbmF0dXJlIjoiRUNEU0EiLCJ0eXBlIjoiRUNEU0FQMjU2REVSIn0sInNpZ25hdHVyZSI6Ik1FWUNJUURCWjJwRFJlNVEzdHVieE1IV2pIUjVwcTZJVnNaT0xsU1BxeUl0VmhrVXFnSWhBUEhxU1hvU3gvTTdvemlMZGdKWlNFeDc1bFZQVDVCQzExRnQ0dkZIZ1dCSCJ9"
 },
 "pub_key": "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEfCc/5CT+K59Dv7+r+MiVX+ARfMeFK9CwdLlicTyjoNJdhFfP4/wnVfXg+vLjrqBYFsYzgokTSTZBSk72WF1RrQ==",
 "active": true
 }
]
}

Example

GET /log-monitor?status=inactive HTTP/1.1
Host: orb.domain1.com

Output:

{
 "inactive": [
 {
 "log_url": "http://orb.vct:8077/maple2020",
 "sth_response": {
 "tree_size": 48,
 "timestamp": 1654869871315,
 "sha256_root_hash": "qlODFYrB140S4ZCYY6+ipISvTALA3x2jEs3bpV0UBrI=",
 "tree_head_signature": "eyJhbGdvcml0aG0iOnsic2lnbmF0dXJlIjoiRUNEU0EiLCJ0eXBlIjoiRUNEU0FQMjU2REVSIn0sInNpZ25hdHVyZSI6Ik1FVUNJUURadEJjVVJROUhuZWJ3UnJrTVJsbXZDZm4yT1BpTWNBK250V2JuL05xNkl3SWdkN1FPcGI0WWNMTkU4N1ZxZ1VoWFFxMFM0c0JaZ2tCV2NRMG45NTd4ZUNNPSJ9"
 },
 "pub_key": "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEfCc/5CT+K59Dv7+r+MiVX+ARfMeFK9CwdLlicTyjoNJdhFfP4/wnVfXg+vLjrqBYFsYzgokTSTZBSk72WF1RrQ==",
 "active": false
 }
]
}

 REST Endpoints

REST Endpoints

	ActivityPub Endpoints

	Sidetree Endpoints

	DID Web File Endpoint

	.well-known Endpoints

	CAS Endpoint

	Witness Policy Endpoint

	VC Endpoints

	Log Endpoint

	System Endpoints

 ActivityPub Endpoints

ActivityPub Endpoints

The ActivityPub spec defines a number of REST endpoints that provide information about a service [https://www.w3.org/TR/activitypub/#actor-objects].
The ActivityAnchors [https://trustbloc.github.io/activityanchors/#actor-discovery] spec extends the ActivityPub spec to provide additional endpoints.

Service

The REST endpoints for a service depend on the value of startup parameter service-id.
By default, the endpoint is /services/orb, but if, for example, service-id is set to did:web:orb.domain1.com:services:anchor,
then the service REST endpoint will be /services/anchor.

Endpoint: /

 Sidetree Endpoints

Sidetree Endpoints

Endpoints are defined to post Sidetree operations and to resolve DID documents.

Operations

Endpoint: /sidetree/v1/operations

POST

Post a Sidetree operation as per Sidetree DID Operations

Example

Post a create operation:

POST /sidetree/v1/operations HTTP/1.1
Host: orb.domain1.com
Content-Type: application/ld+json

{
 "delta": {
 "patches": [
 {
 "action": "add-public-keys",
 "publicKeys": [
 {
 "id": "createKey",
 "publicKeyJwk": {
 "crv": "P-256",
 "kty": "EC",
 "x": "kTpW2qcc66DyPWNnTSmaomtcGC0fOB2XC-OavrtSmOQ",
 "y": "_-2MbdKMjYOTSny4zSHyHU-L2sT9MUoDyQfRr2R_avE"
 },
 "purposes": [
 "authentication"
],
 "type": "JsonWebKey2020"
 },
 {
 "id": "auth",
 "publicKeyJwk": {
 "crv": "Ed25519",
 "kty": "OKP",
 "x": "4BpSggpgRRtlQJKpPznhKfEon1OAlmr1MFjaN2sS4Ns",
 "y": ""
 },
 "purposes": [
 "assertionMethod"
],
 "type": "Ed25519VerificationKey2018"
 }
]
 },
 {
 "action": "add-services",
 "services": [
 {
 "id": "didcomm",
 "priority": 0,
 "recipientKeys": [
 "F1nHc1qea4QNfmcFjHvGxDNRogomARVhNpk8T812eWDD"
],
 "routingKeys": [
 "3xWoBwfwuyRH9ax82z6Lm24URNRJUoxg4PV6CcXBFvWr"
],
 "serviceEndpoint": "https://hub.example.com/.identity/did:example:0123456789abcdef/",
 "type": "did-communication"
 }
]
 }
],
 "updateCommitment": "EiB1FFyDuSMNoMVKvSqZjybZxs_NfqA8WpMd0RTivT351Q"
 },
 "suffixData": {
 "anchorOrigin": "https://orb.domain1.com",
 "deltaHash": "EiDt8PTc-7SRaEoGOkkTTAUTUb8E3fbr4AMAw0Oa8lDZfQ",
 "recoveryCommitment": "EiDEBk7ejSyjddtZWyNA37gA0SdMvkSAqw7BxkLUQkpbyw"
 },
 "type": "create"
}

Response from a create operation:

{
 "@context": "https://w3id.org/did-resolution/v1",
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/jws-2020/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1"
],
 "assertionMethod": [
 "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#auth"
],
 "authentication": [
 "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#createKey"
],
 "id": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "service": [
 {
 "id": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#didcomm",
 "priority": 0,
 "recipientKeys": [
 "F1nHc1qea4QNfmcFjHvGxDNRogomARVhNpk8T812eWDD"
],
 "routingKeys": [
 "3xWoBwfwuyRH9ax82z6Lm24URNRJUoxg4PV6CcXBFvWr"
],
 "serviceEndpoint": "https://hub.example.com/.identity/did:example:0123456789abcdef/",
 "type": "did-communication"
 }
],
 "verificationMethod": [
 {
 "controller": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "id": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#createKey",
 "publicKeyJwk": {
 "crv": "P-256",
 "kty": "EC",
 "x": "kTpW2qcc66DyPWNnTSmaomtcGC0fOB2XC-OavrtSmOQ",
 "y": "_-2MbdKMjYOTSny4zSHyHU-L2sT9MUoDyQfRr2R_avE"
 },
 "type": "JsonWebKey2020"
 },
 {
 "controller": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "id": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#auth",
 "publicKeyBase58": "G5oc2RXAWqCtF6w9K2qDTtPwPjWpSDk923MxWEKiVT6a",
 "type": "Ed25519VerificationKey2018"
 }
]
 },
 "didDocumentMetadata": {
 "equivalentId": [
 "did:orb:https:orb.domain1.com:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ"
],
 "method": {
 "anchorOrigin": "https://orb.domain1.com",
 "published": false,
 "recoveryCommitment": "EiDEBk7ejSyjddtZWyNA37gA0SdMvkSAqw7BxkLUQkpbyw",
 "updateCommitment": "EiB1FFyDuSMNoMVKvSqZjybZxs_NfqA8WpMd0RTivT351Q"
 }
 }
}

Create document response will contain only one entry in equivalentId list in document metadata.
The client can use this equivalentId entry with https hint to resolve document from the domain that is specified in the https hint.

If Orb domain supports unpublished operation caching the client will be able to immediately resolve
unpublished DID document. The server response for unpublished document equals the above-mentioned create operation response.

If the client queries for DID document upon successful anchoring of create operation the document metadata will contain
the following information:

	published flag is set to true

	canonicalId will be present

	multiple equivalent IDs will be present in equivalentId list

	versionId will be present

{
 "@context": "https://w3id.org/did-resolution/v1",
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/jws-2020/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1"
],
 "assertionMethod": [
 "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#auth"
],
 "authentication": [
 "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#createKey"
],
 "id": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "service": [
 {
 "id": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#didcomm",
 "priority": 0,
 "recipientKeys": [
 "F1nHc1qea4QNfmcFjHvGxDNRogomARVhNpk8T812eWDD"
],
 "routingKeys": [
 "3xWoBwfwuyRH9ax82z6Lm24URNRJUoxg4PV6CcXBFvWr"
],
 "serviceEndpoint": "https://hub.example.com/.identity/did:example:0123456789abcdef/",
 "type": "did-communication"
 }
],
 "verificationMethod": [
 {
 "controller": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "id": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#createKey",
 "publicKeyJwk": {
 "crv": "P-256",
 "kty": "EC",
 "x": "kTpW2qcc66DyPWNnTSmaomtcGC0fOB2XC-OavrtSmOQ",
 "y": "_-2MbdKMjYOTSny4zSHyHU-L2sT9MUoDyQfRr2R_avE"
 },
 "type": "JsonWebKey2020"
 },
 {
 "controller": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "id": "did:orb:uAAA:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#auth",
 "publicKeyBase58": "G5oc2RXAWqCtF6w9K2qDTtPwPjWpSDk923MxWEKiVT6a",
 "type": "Ed25519VerificationKey2018"
 }
]
 },
 "didDocumentMetadata": {
 "canonicalId": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "equivalentId": [
 "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "did:orb:hl:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:uoQ-CeEtodHRwczovL29yYi5kb21haW4xLmNvbS9jYXMvdUVpRGFKR05rRkpTTWxTZUtqRUZBSXZqQnhieWJyN1ZXakxweHBsaFhQeDhGQ3d4QmlwZnM6Ly9iYWZrcmVpZzJlcnJ3aWZldXJza3NwY3VtaWZhY2Y2Z2J5dzZqeGw1dmsyZ2x1NG5nbGJsdDZoeWZibQ:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
],
 "method": {
 "anchorOrigin": "https://orb.domain1.com",
 "published": true,
 "recoveryCommitment": "EiDEBk7ejSyjddtZWyNA37gA0SdMvkSAqw7BxkLUQkpbyw",
 "updateCommitment": "EiB1FFyDuSMNoMVKvSqZjybZxs_NfqA8WpMd0RTivT351Q"
 },
 "versionId": "uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw"
 }
}

The Orb server will include the anchor-hash segment within the canonicalId property of the returned DID document metadata.
The anchor-hash is set to the multihash (with multibase prefix) of the latest known AnchorCredential that contains a Create or Recover operation for the DID.

For more details about canonicalId see Canonical IDs [https://trustbloc.github.io/did-method-orb/#propagation-delay-and-canonical-ids]

The Orb server will also include canonicalId as the fist item in equivalent IDs list. The second item in the list
will be discoverable Cryptographic Hyperlink [https://w3c-ccg.github.io/hashlink/]

Once the client is able to obtain canonicalId, the client should discontinue using ‘un-anchored’ identifier (DID that includes uAAA)
and use either canonicalId or cryptographic hyperlink from equivalentId list.

Example

Post an update operation to add new service:

POST /sidetree/v1/operations HTTP/1.1
Host: orb.domain1.com
Content-Type: application/ld+json
{
 "delta": {
 "patches": [
 {
 "action": "add-services",
 "services": [
 {
 "id": "newService",
 "serviceEndpoint": "http://hub.my-personal-server.com",
 "type": "SecureDataStore"
 }
]
 }
],
 "updateCommitment": "EiCosM6zJoafNLoFcvwMTxjqJymG7GRym56PwlP2Jz3Iqg"
 },
 "didSuffix": "EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "revealValue": "EiD4_J1zZ89P4uN8F2_R6a7kgge9s3posjMPMur4Jx0Z4A",
 "signedData": "eyJhbGciOiJFUzI1NiJ9.eyJhbmNob3JGcm9tIjoxNjQ2Njg0MDIzLCJhbmNob3JVbnRpbCI6MTY0NjY4NDMyMywiZGVsdGFIYXNoIjoiRWlDN1B5cGYxSE5xN09SQk53S2NtdWRyYTlScENyeXd4M1lYdGduUjF5azZ0ZyIsInVwZGF0ZUtleSI6eyJjcnYiOiJQLTI1NiIsImt0eSI6IkVDIiwieCI6IlNyb21qMWljRl91b0JVZldPUVotUDdVaXRWeFhqMUU3WXJvbm5BeTEyTUUiLCJ5IjoidEdOMEE4OTh5QnlNUkpmRG9qTHpQR0JYVEJaVHZHOWhZMVRhMmRlc01CYyJ9fQ.T9GaRytJSm1KsUoUoQcKX6Pdk3DJ9qX-IyuRI9iwCl9oGDPMteA9M3ngU9XiXhJpiVJ6MhDGGhH7bR0jZ5HcuQ",
 "type": "update"
}

Resolution response from Orb server upon successful anchoring of update operation:
sidetree/v1/identifiers/did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ
server

{
 "@context": "https://w3id.org/did-resolution/v1",
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/jws-2020/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1"
],
 "assertionMethod": [
 "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#auth"
],
 "authentication": [
 "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#createKey"
],
 "id": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "service": [
 {
 "id": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#didcomm",
 "priority": 0,
 "recipientKeys": [
 "F1nHc1qea4QNfmcFjHvGxDNRogomARVhNpk8T812eWDD"
],
 "routingKeys": [
 "3xWoBwfwuyRH9ax82z6Lm24URNRJUoxg4PV6CcXBFvWr"
],
 "serviceEndpoint": "https://hub.example.com/.identity/did:example:0123456789abcdef/",
 "type": "did-communication"
 },
 {
 "id": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#newService",
 "serviceEndpoint": "http://hub.my-personal-server.com",
 "type": "SecureDataStore"
 }
],
 "verificationMethod": [
 {
 "controller": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "id": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#createKey",
 "publicKeyJwk": {
 "crv": "P-256",
 "kty": "EC",
 "x": "kTpW2qcc66DyPWNnTSmaomtcGC0fOB2XC-OavrtSmOQ",
 "y": "_-2MbdKMjYOTSny4zSHyHU-L2sT9MUoDyQfRr2R_avE"
 },
 "type": "JsonWebKey2020"
 },
 {
 "controller": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "id": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#auth",
 "publicKeyBase58": "G5oc2RXAWqCtF6w9K2qDTtPwPjWpSDk923MxWEKiVT6a",
 "type": "Ed25519VerificationKey2018"
 }
]
 },
 "didDocumentMetadata": {
 "canonicalId": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "equivalentId": [
 "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "did:orb:hl:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:uoQ-CeEtodHRwczovL29yYi5kb21haW4xLmNvbS9jYXMvdUVpRGFKR05rRkpTTWxTZUtqRUZBSXZqQnhieWJyN1ZXakxweHBsaFhQeDhGQ3d4QmlwZnM6Ly9iYWZrcmVpZzJlcnJ3aWZldXJza3NwY3VtaWZhY2Y2Z2J5dzZqeGw1dmsyZ2x1NG5nbGJsdDZoeWZibQ:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
],
 "method": {
 "anchorOrigin": "https://orb.domain1.com",
 "published": true,
 "recoveryCommitment": "EiDEBk7ejSyjddtZWyNA37gA0SdMvkSAqw7BxkLUQkpbyw",
 "updateCommitment": "EiCosM6zJoafNLoFcvwMTxjqJymG7GRym56PwlP2Jz3Iqg"
 },
 "versionId": "uEiB0lC69bPfaIYmRN0wBEYygbEiSFZpJEuIjbqFHnui0ig"
 }
}

Note that versionId specifies anchor-hash that contains update operation. You can use versionId to
resolve document at specific version.

Example

Post a recover operation:

POST /sidetree/v1/operations HTTP/1.1
Host: orb.domain1.com
Content-Type: application/ld+json
{
 "delta": {
 "patches": [
 {
 "action": "add-public-keys",
 "publicKeys": [
 {
 "id": "recoveryKey",
 "publicKeyJwk": {
 "crv": "P-256",
 "kty": "EC",
 "x": "-IRdzsImjgsrto6r_MzU9LjecdeBg153ixNSyUYSiwI",
 "y": "q5g_WtYdCxjXyey4ASH9N7rg9CIwY9guVoD269mTq4k"
 },
 "purposes": [
 "authentication"
],
 "type": "JsonWebKey2020"
 },
 {
 "id": "auth",
 "publicKeyJwk": {
 "crv": "Ed25519",
 "kty": "OKP",
 "x": "6fEptoI2zIVlR9YQHar_xUyWlhnYH6WjJoI-tTIwopY",
 "y": ""
 },
 "purposes": [
 "assertionMethod"
],
 "type": "Ed25519VerificationKey2018"
 }
]
 },
 {
 "action": "add-services",
 "services": [
 {
 "id": "didcomm",
 "priority": 0,
 "recipientKeys": [
 "EvwVTTeLzVRNxX9vETVv8xRSsqfUGi2r3a6DzrhSMTGc"
],
 "routingKeys": [
 "EaMUBZMAYZU8CWcioQBxT6dLjhDvbRjDyVisttixAzpc"
],
 "serviceEndpoint": "https://hub.example.com/.identity/did:example:0123456789abcdef/",
 "type": "did-communication"
 }
]
 }
],
 "updateCommitment": "EiCZDsrREJOpB49QfIPCU-74VXM760gTJGlkhvQAgwdcMQ"
 },
 "didSuffix": "EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "revealValue": "EiAkLgBNtJVpSHGzuWceujPdw0A3p_tK3cXhDndQG3JjPQ",
 "signedData": "eyJhbGciOiJFUzI1NiJ9.eyJhbmNob3JGcm9tIjoxNjQ2Njg0MDI4LCJhbmNob3JPcmlnaW4iOiJodHRwczovL29yYi5kb21haW4xLmNvbSIsImFuY2hvclVudGlsIjoxNjQ2Njg0MzI4LCJkZWx0YUhhc2giOiJFaURJZnVuZXBNbEFSeGFNT2RkcEdxWXIxVkFDVm5VNV8yRkxhYm1FcEdqcXRnIiwicmVjb3ZlcnlDb21taXRtZW50IjoiRWlEY0x1eUNLN2pWVHQ0d0JWM09pSFhiX2E4WmNkMG5NMEtnTXlLTnJlWkZ3dyIsInJlY292ZXJ5S2V5Ijp7ImNydiI6IlAtMjU2Iiwia3R5IjoiRUMiLCJ4IjoiQnF2anpEMDdWNnRwYjVfVHNVRzNDRWJENHVJSkh3TmlvTzFOc0VGWVpRUSIsInkiOiJmbGktSVJRcnhHXzhESGJLMlJtMVEtN1hKay14VEtHQjIwRk5WdFFTSTJZIn19.EBbqSNSe6vZHOJMsxXkv7tRk1g6k28qzOWwhqAP8XIB_4mpzJEhoVaVSKT14LIOTQBAaQXad-PV52WnwoyBWvg",
 "type": "recover"
}

Upon successful anchoring of recover operation the Orb server will return the following resolution response
for the following request:
sidetree/v1/identifiers/did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ

{
 "@context": "https://w3id.org/did-resolution/v1",
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/jws-2020/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1"
],
 "assertionMethod": [
 "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#auth"
],
 "authentication": [
 "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#recoveryKey"
],
 "id": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "service": [
 {
 "id": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#didcomm",
 "priority": 0,
 "recipientKeys": [
 "EvwVTTeLzVRNxX9vETVv8xRSsqfUGi2r3a6DzrhSMTGc"
],
 "routingKeys": [
 "EaMUBZMAYZU8CWcioQBxT6dLjhDvbRjDyVisttixAzpc"
],
 "serviceEndpoint": "https://hub.example.com/.identity/did:example:0123456789abcdef/",
 "type": "did-communication"
 }
],
 "verificationMethod": [
 {
 "controller": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "id": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#recoveryKey",
 "publicKeyJwk": {
 "crv": "P-256",
 "kty": "EC",
 "x": "-IRdzsImjgsrto6r_MzU9LjecdeBg153ixNSyUYSiwI",
 "y": "q5g_WtYdCxjXyey4ASH9N7rg9CIwY9guVoD269mTq4k"
 },
 "type": "JsonWebKey2020"
 },
 {
 "controller": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "id": "did:orb:uEiDaJGNkFJSMlSeKjEFAIvjBxbybr7VWjLpxplhXPx8FCw:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ#auth",
 "publicKeyBase58": "GkDHCaxe2yyD5SHRZPWTd61rzsrx66aimzJAV1SNYPpH",
 "type": "Ed25519VerificationKey2018"
 }
]
 },
 "didDocumentMetadata": {
 "canonicalId": "did:orb:uEiDU52ebPORSjOWs2Lh5pTOBFVlioPNyVdOfsrL2feH5Pg:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "equivalentId": [
 "did:orb:uEiDU52ebPORSjOWs2Lh5pTOBFVlioPNyVdOfsrL2feH5Pg:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "did:orb:hl:uEiDU52ebPORSjOWs2Lh5pTOBFVlioPNyVdOfsrL2feH5Pg:uoQ-CeEtodHRwczovL29yYi5kb21haW4xLmNvbS9jYXMvdUVpRFU1MmViUE9SU2pPV3MyTGg1cFRPQkZWbGlvUE55VmRPZnNyTDJmZUg1UGd4QmlwZnM6Ly9iYWZrcmVpZ3U0NXR6d3BoZWtrZ29sbGd5eGI0MmttNGJjdm13ZmlodG9qazVoaDVzd2wzaDN5cHpoeQ:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
],
 "method": {
 "anchorOrigin": "https://orb.domain1.com",
 "published": true,
 "recoveryCommitment": "EiDcLuyCK7jVTt4wBV3OiHXb_a8Zcd0nM0KgMyKNreZFww",
 "updateCommitment": "EiCZDsrREJOpB49QfIPCU-74VXM760gTJGlkhvQAgwdcMQ"
 },
 "versionId": "uEiDU52ebPORSjOWs2Lh5pTOBFVlioPNyVdOfsrL2feH5Pg"
 }
}

Note that canonicalId has changed - it includes anchor-hash that contains recover operation. At this point the client
should discontinue using old canonicalId and use new canonicalId.

For more details about canonicalId see Canonical IDs [https://trustbloc.github.io/did-method-orb/#propagation-delay-and-canonical-ids]

Example

Post a deactivate operation:

POST /sidetree/v1/operations HTTP/1.1
Host: orb.domain1.com
Content-Type: application/ld+json
{
 "didSuffix": "EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "revealValue": "EiDdHkE3GeAfTcPQdrVi8ET2_4NbRl9emFigCKdx9hp1yQ",
 "signedData": "eyJhbGciOiJFUzI1NiJ9.eyJhbmNob3JGcm9tIjoxNjQ2Njg0MDM4LCJkaWRTdWZmaXgiOiJFaURJRnU4QmV2LW5Kc3E4dXcyeEdIS3RMS3I2YUxuY0ZNbk9sU1E5cGZQNFZRIiwicmVjb3ZlcnlLZXkiOnsiY3J2IjoiUC0yNTYiLCJrdHkiOiJFQyIsIngiOiJsWDYxUXlFWkVwaWh3N1dmMGt1bXlYMW1WX19heHRObkczM0VPNUZVRmhZIiwieSI6ImZUdWlURkJsZmo3OFIwUzVvbXRJNTZmamdOVlU5MFhMTzdkWEx0X21TbW8ifSwicmV2ZWFsVmFsdWUiOiIifQ.8lC5SPQO6FsvXCOCly5WNt33muD5SEAHC3iOLG1pGc0pWyct7R5MCOMD80xZwB_KnJManW6eMuVY4lZI6UmuTw",
 "type": "deactivate"
}

Upon successful anchoring of deactivate operation the Orb server will return the following resolution response
for the following request:
sidetree/v1/identifiers/did:orb:uEiDU52ebPORSjOWs2Lh5pTOBFVlioPNyVdOfsrL2feH5Pg:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ

{
 "@context": "https://w3id.org/did-resolution/v1",
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1"
],
 "id": "did:orb:uEiDU52ebPORSjOWs2Lh5pTOBFVlioPNyVdOfsrL2feH5Pg:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ"
 },
 "didDocumentMetadata": {
 "canonicalId": "did:orb:uEiDU52ebPORSjOWs2Lh5pTOBFVlioPNyVdOfsrL2feH5Pg:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "deactivated": true,
 "equivalentId": [
 "did:orb:uEiDU52ebPORSjOWs2Lh5pTOBFVlioPNyVdOfsrL2feH5Pg:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "did:orb:hl:uEiDU52ebPORSjOWs2Lh5pTOBFVlioPNyVdOfsrL2feH5Pg:uoQ-CeEtodHRwczovL29yYi5kb21haW4xLmNvbS9jYXMvdUVpRFU1MmViUE9SU2pPV3MyTGg1cFRPQkZWbGlvUE55VmRPZnNyTDJmZUg1UGd4QmlwZnM6Ly9iYWZrcmVpZ3U0NXR6d3BoZWtrZ29sbGd5eGI0MmttNGJjdm13ZmlodG9qazVoaDVzd2wzaDN5cHpoeQ:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ",
 "did:orb:https:shared.domain.com:uEiDU52ebPORSjOWs2Lh5pTOBFVlioPNyVdOfsrL2feH5Pg:EiDIFu8Bev-nJsq8uw2xGHKtLKr6aLncFMnOlSQ9pfP4VQ"
],
 "method": {
 "anchorOrigin": "https://orb.domain1.com",
 "published": true
 },
 "versionId": "uEiB7tOd2S0lyQxQYaR0PcgbEQHhSS1PNplvlP5Qtfu-kjw"
 }
}

Note that deactivated flag in the document metadata has been set to true and that DID document is an empty document
that contains only id. Once DID document has been deactivated it is no longer possible to recover or modify DID document.

Identifiers

Endpoint: /sidetree/v1/identifiers/[id]

This endpoint supports the resolution of DID documents for two did methods:

	did:orb

	did:web

GET

Resolve a DID document as per Sidetree DID Resolution

DID Orb Method Example

Resolve a DID document using a canonical DID:

GET /sidetree/v1/identifiers/did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q HTTP/1.1
Host: orb.domain2.com
Accept: application/ld+json
Accept-Encoding: gzip, deflate

Response contains DID resolution result:

{
 "@context": "https://w3id.org/did-resolution/v1",
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/jws-2020/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1"
],
 "assertionMethod": [
 "did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q#auth"
],
 "authentication": [
 "did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q#recoveryKey"
],
 "id": "did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q",
 "service": [
 {
 "id": "did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q#didcomm",
 "priority": 0,
 "recipientKeys": [
 "2qN15Qwk1uEi19BYJ19zshrxLHkKa5QvvXkLjdn56AaX"
],
 "routingKeys": [
 "3kRwP6VuwcbNSzevReUpfDWwyVGRS4YtqxB69DAs3VFN"
],
 "serviceEndpoint": "https://hub.example.com/.identity/did:example:0123456789abcdef/",
 "type": "did-communication"
 }
],
 "verificationMethod": [
 {
 "controller": "did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q",
 "id": "did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q#recoveryKey",
 "publicKeyJwk": {
 "crv": "P-256",
 "kty": "EC",
 "x": "MhxmsoUl3ACv0aZSJejEp6kxEO7QzSHedcYKN-3o0xw",
 "y": "7-TWvrUbnBkFFrqZ_nqVwFTgQyJE_mg11e3ckUEThvQ"
 },
 "type": "JsonWebKey2020"
 },
 {
 "controller": "did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q",
 "id": "did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q#auth",
 "publicKeyBase58": "4bkaQc1vU79nTbzUwyBSYtiv2pbb9mTYxHP1A7hGbyU3",
 "type": "Ed25519VerificationKey2018"
 }
]
 },
 "didDocumentMetadata": {
 "canonicalId": "did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q",
 "equivalentId": [
 "did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q",
 "did:orb:hl:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:uoQ-BeEJpcGZzOi8vYmFma3JlaWRxbWtkZHlyMmxrNmd4NWJ4enJneGdraHRqczNzcHJ5bmtkaHd3bGkzN2l4eXhzbHB5bnU:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q"
],
 "method": {
 "anchorOrigin": "https://orb.domain1.com",
 "published": true,
 "publishedOperations": [
 {
 "anchorOrigin": "https://orb.domain1.com",
 "canonicalReference": "uEiDb2k2i5gYlgTg8GA8gN7apTp_JOkLgUCDY9A5eLOTXsQ",
 "equivalentReferences": [
 "hl:uEiDb2k2i5gYlgTg8GA8gN7apTp_JOkLgUCDY9A5eLOTXsQ:uoQ-BeEJpcGZzOi8vYmFma3JlaWczM2pnMmZ6cWdld2F0cXBheWI0cWRwbnZqajJwNHNvc2M0YmljYndodWJ6cGN6emd4d2U"
],
 "operationRequest": "eyJkZWx0YSI6eyJwYXRjaGVzIjpbeyJhY3Rpb24iOiJhZGQtcHVibGljLWtleXMiLCJwdWJsaWNLZXlzIjpbeyJpZCI6ImNyZWF0ZUtleSIsInB1YmxpY0tleUp3ayI6eyJjcnYiOiJQLTI1NiIsImt0eSI6IkVDIiwieCI6IjFwLU1sU0psTHowM05JemRuWWVTUnhMQ3dUNXhLQUpSQTVlcWd1TUIxOFEiLCJ5IjoiUFhXdXRsV3hRM3hDLTYwbExaRkc1REpZR2VNcVFUSDNUQ21jMDg1WFlHSSJ9LCJwdXJwb3NlcyI6WyJhdXRoZW50aWNhdGlvbiJdLCJ0eXBlIjoiSnNvbldlYktleTIwMjAifSx7ImlkIjoiYXV0aCIsInB1YmxpY0tleUp3ayI6eyJjcnYiOiJFZDI1NTE5Iiwia3R5IjoiT0tQIiwieCI6IkZfMFZfTG1Fel9qZVBFbFJmYXBEdzlvbHphbEo1SjJ2MW44MVpkVWVkWU0iLCJ5IjoiIn0sInB1cnBvc2VzIjpbImFzc2VydGlvbk1ldGhvZCJdLCJ0eXBlIjoiRWQyNTUxOVZlcmlmaWNhdGlvbktleTIwMTgifV19LHsiYWN0aW9uIjoiYWRkLXNlcnZpY2VzIiwic2VydmljZXMiOlt7ImlkIjoiZGlkY29tbSIsInByaW9yaXR5IjowLCJyZWNpcGllbnRLZXlzIjpbIkFrc3hOcnVrcUpBUkZQVENrUVFOZHprWjZpaFhLbXNQUHg3Z1M5cXBKZ3pDIl0sInJvdXRpbmdLZXlzIjpbIkRpRloxNG00M3FCa1VTVHNaWFR2U2oxQjVYQmR2UkptR2dINkZQVmM0bXdNIl0sInNlcnZpY2VFbmRwb2ludCI6Imh0dHBzOi8vaHViLmV4YW1wbGUuY29tLy5pZGVudGl0eS9kaWQ6ZXhhbXBsZTowMTIzNDU2Nzg5YWJjZGVmLyIsInR5cGUiOiJkaWQtY29tbXVuaWNhdGlvbiJ9XX1dLCJ1cGRhdGVDb21taXRtZW50IjoiRWlEWjhRMXMwb0ZhbkhXWmxrOHBKTWdEc29EeTVVX1ZoeHUzMG9BaEUyVVQ3dyJ9LCJzdWZmaXhEYXRhIjp7ImFuY2hvck9yaWdpbiI6Imh0dHBzOi8vb3JiLmRvbWFpbjEuY29tIiwiZGVsdGFIYXNoIjoiRWlBNmlYcVJ1TGNramFNbjk3M09wTWxsQm1RNzZjWnY1VDFlMkZQMWVrc19idyIsInJlY292ZXJ5Q29tbWl0bWVudCI6IkVpQjQ3NzVNd0NERnRiSDFGU1dpU3UybkpjcGVVblZ6a1U4MW8wMHUxMEZRUVEifSwidHlwZSI6ImNyZWF0ZSJ9",
 "protocolVersion": 0,
 "transactionNumber": 0,
 "transactionTime": 1645800397,
 "type": "create"
 },
 {
 "anchorOrigin": "https://orb.domain1.com",
 "canonicalReference": "uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ",
 "equivalentReferences": [
 "hl:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:uoQ-BeEJpcGZzOi8vYmFma3JlaWRxbWtkZHlyMmxrNmd4NWJ4enJneGdraHRqczNzcHJ5bmtkaHd3bGkzN2l4eXhzbHB5bnU"
],
 "operationRequest": "eyJkZWx0YSI6eyJwYXRjaGVzIjpbeyJhY3Rpb24iOiJhZGQtcHVibGljLWtleXMiLCJwdWJsaWNLZXlzIjpbeyJpZCI6InJlY292ZXJ5S2V5IiwicHVibGljS2V5SndrIjp7ImNydiI6IlAtMjU2Iiwia3R5IjoiRUMiLCJ4IjoiTWh4bXNvVWwzQUN2MGFaU0plakVwNmt4RU83UXpTSGVkY1lLTi0zbzB4dyIsInkiOiI3LVRXdnJVYm5Ca0ZGcnFaX25xVndGVGdReUpFX21nMTFlM2NrVUVUaHZRIn0sInB1cnBvc2VzIjpbImF1dGhlbnRpY2F0aW9uIl0sInR5cGUiOiJKc29uV2ViS2V5MjAyMCJ9LHsiaWQiOiJhdXRoIiwicHVibGljS2V5SndrIjp7ImNydiI6IkVkMjU1MTkiLCJrdHkiOiJPS1AiLCJ4IjoiTlhvVWJrWFJnbWpJcnIzNzZxbTVxaDJKUFpXREhxRkVNV3dwdzE1LURFQSIsInkiOiIifSwicHVycG9zZXMiOlsiYXNzZXJ0aW9uTWV0aG9kIl0sInR5cGUiOiJFZDI1NTE5VmVyaWZpY2F0aW9uS2V5MjAxOCJ9XX0seyJhY3Rpb24iOiJhZGQtc2VydmljZXMiLCJzZXJ2aWNlcyI6W3siaWQiOiJkaWRjb21tIiwicHJpb3JpdHkiOjAsInJlY2lwaWVudEtleXMiOlsiMnFOMTVRd2sxdUVpMTlCWUoxOXpzaHJ4TEhrS2E1UXZ2WGtMamRuNTZBYVgiXSwicm91dGluZ0tleXMiOlsiM2tSd1A2VnV3Y2JOU3pldlJlVXBmRFd3eVZHUlM0WXRxeEI2OURBczNWRk4iXSwic2VydmljZUVuZHBvaW50IjoiaHR0cHM6Ly9odWIuZXhhbXBsZS5jb20vLmlkZW50aXR5L2RpZDpleGFtcGxlOjAxMjM0NTY3ODlhYmNkZWYvIiwidHlwZSI6ImRpZC1jb21tdW5pY2F0aW9uIn1dfV0sInVwZGF0ZUNvbW1pdG1lbnQiOiJFaUFsczR5V2xGRWIwWHBkYlViVjVpODY0TE9VX05WMGxFb3pyYmFoN2syMWxnIn0sImRpZFN1ZmZpeCI6IkVpQXpYTF9SYlp4M1JDTTRhVGhaMC1RZVAwTDl4N2VvWXdKQksybl9hMFVtNVEiLCJyZXZlYWxWYWx1ZSI6IkVpQzdPcDJTcUlJR1FEX2xRWEhIa0xKOWo3ODJfVTNGTVExeGNQVDAxNzQyQXciLCJzaWduZWREYXRhIjoiZXlKaGJHY2lPaUpGVXpJMU5pSjkuZXlKaGJtTm9iM0pHY205dElqb3hOalExT0RBd016azRMQ0poYm1Ob2IzSlBjbWxuYVc0aU9pSm9kSFJ3Y3pvdkwyOXlZaTVrYjIxaGFXNHhMbU52YlNJc0ltRnVZMmh2Y2xWdWRHbHNJam94TmpRMU9EQXdOams0TENKa1pXeDBZVWhoYzJnaU9pSkZhVVJrUkRWR1VtRjJNMDFhYnpGWGFHNU5WRmhVV201NVJIbGpXVXR3UjNSWFVWYzBSVU5zY2poUWVsUkJJaXdpY21WamIzWmxjbmxEYjIxdGFYUnRaVzUwSWpvaVJXbENUbXh5ZEhJeVJucFFkM1pCVUZFeGMyaERPR3hGVG1GT2EyMXpTR1Z3UXpOR1JHUjJiek5EVERoWlFTSXNJbkpsWTI5MlpYSjVTMlY1SWpwN0ltTnlkaUk2SWxBdE1qVTJJaXdpYTNSNUlqb2lSVU1pTENKNElqb2lSMk5LVW10TFREQk5aVnBLYnpWTVZHRndjVTl1YmxGamNFMWZWR3d4U0RGamVteFpWMDVUYkdoMU9DSXNJbmtpT2lJeWVpMXRhRlJyT0VGcFVISmZlWEJTUmpodkxVOTFkelpKZFRaUlEwUnZhSEZMYURGeGJsVlBhelF3SW4xOS5vcDVCR3Q5cHF6UEdJQml2R1RiYzBJMkdtSzN0dmpBRzE3NERac2VkWTRMT0NHdkk3RDI3MlVGZFNZMWRIVlYxdkI4dm5vNzdUWkNadDdyY3FMVno4USIsInR5cGUiOiJyZWNvdmVyIn0=",
 "protocolVersion": 0,
 "transactionNumber": 0,
 "transactionTime": 1645800399,
 "type": "recover"
 }
],
 "recoveryCommitment": "EiBNlrtr2FzPwvAPQ1shC8lENaNkmsHepC3FDdvo3CL8YA",
 "updateCommitment": "EiAls4yWlFEb0XpdbUbV5i864LOU_NV0lEozrbah7k21lg"
 }
 }
}

DID Parameters

Orb supports the following DID query parameters:

versionId

Identifies a specific version of a DID document to be resolved.
In orb the version ID specifies anchor hash that includes relevant DID operation.
If present, the associated value MUST be an ASCII string.

GET /sidetree/v1/identifiers/did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q?versionId=uEiCRI0FqR6cFVQ8rOPOsD-muNo8k_m7mYU_RPTYLPxdBvg HTTP/1.1
Host: orb.domain2.com
Accept: application/ld+json
Accept-Encoding: gzip, deflate

versionTime

Identifies a certain version timestamp of a DID document to be resolved.
That is, the DID document that was valid for a DID at a certain time.
If present, the associated value MUST be an ASCII string which is a valid XML datetime value.
This datetime value MUST be normalized to UTC 00:00:00 and without sub-second decimal precision.
For example: 2020-12-20T19:17:47Z.

GET /sidetree/v1/identifiers/did:orb:uEiBwYoY8R0tXjX6G-YmuZR5pluT44aoZ7WWjf0XxeS34bQ:EiAzXL_RbZx3RCM4aThZ0-QeP0L9x7eoYwJBK2n_a0Um5Q?versionTime=2022-03-04T17:40:59Z HTTP/1.1
Host: orb.domain2.com
Accept: application/ld+json
Accept-Encoding: gzip, deflate

For more details about versionId and versionTime queries see DID Parameters [https://www.w3.org/TR/did-core/#did-parameters]

DID Web Method Example

Request:

GET /sidetree/v1/identifiers/did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ HTTP/1.1
Host: orb.domain3.com
Accept: application/json

Response:

{
 "@context": "https://w3id.org/did-resolution/v1",
 "didDocument": {
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/jws-2020/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1"
],
 "alsoKnownAs": [
 "did:orb:uEiDDV4Yn9wx0c5dlrYT90TsjB6fg2Gc6x91X1gG3O5oJIA:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ",
 "did:orb:hl:uEiDDV4Yn9wx0c5dlrYT90TsjB6fg2Gc6x91X1gG3O5oJIA:uoQ-BeEtodHRwczovL29yYi5kb21haW4zLmNvbS9jYXMvdUVpRERWNFluOXd4MGM1ZGxyWVQ5MFRzakI2ZmcyR2M2eDkxWDFnRzNPNW9KSUE:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ"
],
 "assertionMethod": [
 "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ#auth"
],
 "authentication": [
 "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ#createKey"
],
 "id": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ",
 "service": [
 {
 "id": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ#didcomm",
 "priority": 0,
 "recipientKeys": [
 "2FE8JwxEhd3apwqQQxpURmN4iiaM8H7cCAvU1K3D1Mmr"
],
 "serviceEndpoint": "https://hub.example.com/.identity/did:example:0123456789abcdef/",
 "type": "did-communication"
 }
],
 "verificationMethod": [
 {
 "controller": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ",
 "id": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ#createKey",
 "publicKeyJwk": {
 "crv": "P-256",
 "kty": "EC",
 "x": "0Di-FS6Y9v8QyNyswEPdHJ6HK_Yx2Ek-OLsfyEcKyLQ",
 "y": "MsQvvYkqcvRn4ndZCMU7JjTq1sUXpt3xpjaldNLiLxQ"
 },
 "type": "JsonWebKey2020"
 },
 {
 "controller": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ",
 "id": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ#auth",
 "publicKeyBase58": "XpPrnB4DAiQTXL2dDCoenje8aVtocY3FqMFcy8w6fBK",
 "type": "Ed25519VerificationKey2018"
 }
]
 }
}

 DID Web File Endpoint

DID Web File Endpoint

The DID Web [https://w3c-ccg.github.io/did-method-web/#read-resolve] file endpoint is used for resolution of did:web method documents by universal resolver and other did:web resolvers. This endpoint will serve DID document only not DID resolution result.

Endpoint: /scid/{id}/did.json

GET

Example

Request:

GET /scid/EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ/did.json HTTP/1.1
Host: orb.domain3.com
Accept: application/json

Response:

{
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/jws-2020/v1",
 "https://w3id.org/security/suites/ed25519-2018/v1"
],
 "alsoKnownAs": [
 "did:orb:uEiDDV4Yn9wx0c5dlrYT90TsjB6fg2Gc6x91X1gG3O5oJIA:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ",
 "did:orb:hl:uEiDDV4Yn9wx0c5dlrYT90TsjB6fg2Gc6x91X1gG3O5oJIA:uoQ-BeEtodHRwczovL29yYi5kb21haW4zLmNvbS9jYXMvdUVpRERWNFluOXd4MGM1ZGxyWVQ5MFRzakI2ZmcyR2M2eDkxWDFnRzNPNW9KSUE:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ"
],
 "assertionMethod": [
 "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ#auth"
],
 "authentication": [
 "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ#createKey"
],
 "id": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ",
 "service": [
 {
 "id": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ#didcomm",
 "priority": 0,
 "recipientKeys": [
 "2FE8JwxEhd3apwqQQxpURmN4iiaM8H7cCAvU1K3D1Mmr"
],
 "serviceEndpoint": "https://hub.example.com/.identity/did:example:0123456789abcdef/",
 "type": "did-communication"
 }
],
 "verificationMethod": [
 {
 "controller": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ",
 "id": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ#createKey",
 "publicKeyJwk": {
 "crv": "P-256",
 "kty": "EC",
 "x": "0Di-FS6Y9v8QyNyswEPdHJ6HK_Yx2Ek-OLsfyEcKyLQ",
 "y": "MsQvvYkqcvRn4ndZCMU7JjTq1sUXpt3xpjaldNLiLxQ"
 },
 "type": "JsonWebKey2020"
 },
 {
 "controller": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ",
 "id": "did:web:orb.domain3.com:scid:EiCNuOisUYmxNfT2HugwwMYQAyzLr9FxI7tbT3eb5r3mFQ#auth",
 "publicKeyBase58": "XpPrnB4DAiQTXL2dDCoenje8aVtocY3FqMFcy8w6fBK",
 "type": "Ed25519VerificationKey2018"
 }
]
}

 .well-known Endpoints

.well-known Endpoints

The .well-known [https://datatracker.ietf.org/doc/html/rfc5785] endpoints are used for discovery of services within an Orb domain.

did-orb

Endpoint: /.well-known/did-orb

GET

Example

Request:

GET /.well-known/did-orb HTTP/1.1
Host: orb.domain1.com
Accept: application/json

Response:

{
 "resolutionEndpoint": "https://orb.domain1.com/sidetree/v1/identifiers",
 "operationEndpoint": "https://orb.domain1.com/sidetree/v1/operations"
}

host-meta

Endpoint: /.well-known/host-meta

GET

Example

Request:

GET /.well-known/host-meta HTTP/1.1
Host: orb.domain1.com
Accept: application/json

Response:

{
 "links": [
 {
 "rel": "self",
 "type": "application/jrd+json",
 "template": "https://orb.domain1.com/.well-known/webfinger?resource={uri}"
 },
 {
 "rel": "self",
 "type": "application/activity+json",
 "href": "https://orb.domain1.com/services/orb"
 }
]
}

host-meta.json

Endpoint: /.well-known/host-meta.json

GET

Example

Request:

GET /.well-known/host-meta.json HTTP/1.1
Host: orb.domain1.com

Response:

{
 "links": [
 {
 "rel": "self",
 "type": "application/jrd+json",
 "template": "https://orb.domain1.com/.well-known/webfinger?resource={uri}"
 },
 {
 "rel": "self",
 "type": "application/activity+json",
 "href": "https://orb.domain1.com/services/orb"
 }
]
}

did.json

Endpoint: /.well-known/did.json

GET

Example

Request:

GET /.well-known/did.json HTTP/1.1
Host: orb.domain1.com

Response:

{
 "@context": "https://w3id.org/did/v1",
 "id": "did:web:orb.domain1.com",
 "verificationMethod": [
 {
 "id": "did:web:orb.domain1.com#orb1key2",
 "controller": "did:web:orb.domain1.com",
 "type": "Ed25519VerificationKey2018",
 "publicKeyBase58": "Cd5DEcovdeweWWkMzXL5XmvtL5ov1jgcf7i6itnbVz8m"
 },
 {
 "id": "did:web:orb.domain1.com#orb1key",
 "controller": "did:web:orb.domain1.com",
 "type": "Ed25519VerificationKey2018",
 "publicKeyBase58": "245RycEHD7YAaaELTdUBLGF66iehCzpT3qy1jHLZoTMX"
 }
],
 "authentication": [
 "did:web:orb.domain1.com#orb1key2",
 "did:web:orb.domain1.com#orb1key"
],
 "assertionMethod": [
 "did:web:orb.domain1.com#orb1key2",
 "did:web:orb.domain1.com#orb1key"
],
 "capabilityDelegation": [
 "did:web:orb.domain1.com#orb1key2",
 "did:web:orb.domain1.com#orb1key"
],
 "capabilityInvocation": [
 "did:web:orb.domain1.com#orb1key2",
 "did:web:orb.domain1.com#orb1key"
]
}

webfinger

Endpoint: /.well-known/webfinger?resource={uri}

GET

Example #1

Request information about the domain, including the VCT (if configured):

GET /.well-known/webfinger?resource=https://orb.domain1.com
Host: orb.domain1.com
Accept: application/json

Response:

{
 "subject": "https://orb.domain1.com",
 "properties": {
 "https://trustbloc.dev/ns/ledger-type": "vct-v1"
 },
 "links": [
 {
 "rel": "self",
 "type": "application/jrd+json",
 "href": "https://orb.domain1.com"
 },
 {
 "rel": "vct",
 "type": "application/jrd+json",
 "href": "http://orb.vct:8077/maple2022"
 }
]
}

Example #2

Request information about the resolution endpoint:

GET /.well-known/webfinger?resource=https://orb.domain1.com/sidetree/v1/identifiers
Host: orb.domain1.com
Accept: application/json

Response:

{
 "subject": "https://orb.domain1.com/sidetree/v1/identifiers",
 "properties": {
 "https://trustbloc.dev/ns/min-resolvers": 1
 },
 "links": [
 {
 "rel": "self",
 "href": "https://orb.domain1.com/sidetree/v1/identifiers"
 }
]
}

Example #3

Request information about the operations endpoint:

GET /.well-known/webfinger?resource=https://orb.domain1.com/sidetree/v1/operations
Host: orb.domain1.com
Accept: application/json

Response:

{
 "subject": "https://orb.domain1.com/sidetree/v1/operations",
 "links": [
 {
 "rel": "self",
 "href": "https://orb.domain1.com/sidetree/v1/operations"
 }
]
}

Example #4

Request information about a specific DID:

GET /.well-known/webfinger?resource=did:orb:uEiDYK49ULtocB0ecZB5kzdo1oCAbJEJmAr65xpoWDq3Y1w:EiAWa2VAwDV3iC7q2nWygTy4b5AuwfTnf1g_ZYPZJFnJRA
Host: orb.domain1.com
Accept: application/json

Response:

{
 "properties": {
 "https://trustbloc.dev/ns/anchor-origin": "https://orb.domain1.com",
 "https://trustbloc.dev/ns/min-resolvers": 1
 },
 "links": [
 {
 "rel": "self",
 "type": "application/did+ld+json",
 "href": "https://orb.domain1.com/sidetree/v1/identifiers/did:orb:uEiB9vhEm-4i8Vn1NSLcjYH50IsLCuGYDsKHpCEn6T0VHMg:EiAWa2VAwDV3iC7q2nWygTy4b5AuwfTnf1g_ZYPZJFnJRA"
 },
 {
 "rel": "via",
 "type": "application/ld+json",
 "href": "hl:uEiB9vhEm-4i8Vn1NSLcjYH50IsLCuGYDsKHpCEn6T0VHMg:uoQ-BeEJpcGZzOi8vYmFma3JlaWQ1eHlpc242NGl4cmxoMnRraXc0cndhN3R1ZWxibWZvZGdhb3lrZDJpaWpoNWU2cmtoZ2k"
 },
 {
 "rel": "service",
 "type": "application/activity+json",
 "href": "https://orb.domain1.com/services/orb"
 }
]
}

Example #5

Request information about an Anchor Linkset which also includes alternate links to the file:

GET /.well-known/webfinger?resource=https://orb.domain1.com/cas/uEiCYEQhiFYGnf74G6jcOz7tRdJ6xaA_eakBhsHxu0KJJBg
Host: orb.domain1.com
Accept: application/json

Response:

{
 "subject": "https://orb.domain1.com/cas/uEiCYEQhiFYGnf74G6jcOz7tRdJ6xaA_eakBhsHxu0KJJBg",
 "links": [
 {
 "rel": "self",
 "type": "application/ld+json",
 "href": "https://orb.domain1.com/cas/uEiCYEQhiFYGnf74G6jcOz7tRdJ6xaA_eakBhsHxu0KJJBg"
 },
 {
 "rel": "alternate",
 "type": "application/ld+json",
 "href": "https://orb.domain2.com/cas/uEiCYEQhiFYGnf74G6jcOz7tRdJ6xaA_eakBhsHxu0KJJBg"
 }
]
}

nodeinfo

Endpoint: /.well-known/nodeinfo

GET

Returns the NodeInfo endpoints that may be queried to provide general information about an Orb server.

Example

Request:

GET /.well-known/nodeinfo HTTP/1.1
Host: orb.domain1.com
Accept: application/json

Response:

{
 "links": [
 {
 "rel": "http://nodeinfo.diaspora.software/ns/schema/2.0",
 "href": "https://orb.domain1.com/nodeinfo/2.0"
 },
 {
 "rel": "http://nodeinfo.diaspora.software/ns/schema/2.1",
 "href": "https://orb.domain1.com/nodeinfo/2.1"
 }
]
}

 CAS Endpoint

CAS Endpoint

Endpoint: /cas/[id]

GET

Returns content stored in the Content Addressable Storage (CAS). The ID is either an IPFS
CID [https://docs.ipfs.io/concepts/content-addressing/] or the hash of the content.

Example

Request an Anchor Linkset using its hash as the ID:

GET /cas/uEiAFSmhbZSMOCK8YjpzoYrKTTrPZo5POkMGy3S6zOKnBgg HTTP/1.1
Host: orb.domain1.com
Accept-Encoding: gzip, deflate

Response contains the Anchor Linkset:

{
 "linkset": [
 {
 "anchor": "hl:uEiBu8_7A4JQ1l9cRkxrInZ-2cxgeuoerMOueXmRI-mmfog",
 "author": [
 {
 "href": "did:web:orb.domain2.com:services:orb"
 }
],
 "original": [
 {
 "href": "data:application/json,%7B%22linkset%22%3A%5B%7B%22anchor%22%3A%22hl%3AuEiCdxlzbCM_pQopycBF8Q_KA58ioizEaWNJqlKxGrdlSjg%22%2C%22author%22%3A%5B%7B%22href%22%3A%22did%3Aweb%3Aorb.domain2.com%3Aservices%3Aorb%22%7D%5D%2C%22item%22%3A%5B%7B%22href%22%3A%22did%3Aorb%3AuAAA%3AEiDO4M4BoSmK4wFL-sSmFBhOyjeWfb2IuDovY1hRov5Cgg%22%7D%5D%2C%22profile%22%3A%5B%7B%22href%22%3A%22https%3A%2F%2Fw3id.org%2Forb%23v0%22%7D%5D%7D%5D%7D",
 "type": "application/linkset+json"
 }
],
 "profile": [
 {
 "href": "https://w3id.org/orb#v0"
 }
],
 "related": [
 {
 "href": "data:application/json,%7B%22linkset%22%3A%5B%7B%22anchor%22%3A%22hl%3AuEiBu8_7A4JQ1l9cRkxrInZ-2cxgeuoerMOueXmRI-mmfog%22%2C%22profile%22%3A%5B%7B%22href%22%3A%22https%3A%2F%2Fw3id.org%2Forb%23v0%22%7D%5D%2C%22via%22%3A%5B%7B%22href%22%3A%22hl%3AuEiCdxlzbCM_pQopycBF8Q_KA58ioizEaWNJqlKxGrdlSjg%3AuoQ-BeEtodHRwczovL29yYi5kb21haW4yLmNvbS9jYXMvdUVpQ2R4bHpiQ01fcFFvcHljQkY4UV9LQTU4aW9pekVhV05KcWxLeEdyZGxTamc%22%7D%5D%7D%5D%7D",
 "type": "application/linkset+json"
 }
],
 "replies": [
 {
 "href": "data:application/json,%7B%22%40context%22%3A%5B%22https%3A%2F%2Fwww.w3.org%2F2018%2Fcredentials%2Fv1%22%2C%22https%3A%2F%2Fw3id.org%2Factivityanchors%2Fv1%22%2C%22https%3A%2F%2Fw3id.org%2Fsecurity%2Fsuites%2Fjws-2020%2Fv1%22%2C%22https%3A%2F%2Fw3id.org%2Fsecurity%2Fsuites%2Fed25519-2020%2Fv1%22%5D%2C%22credentialSubject%22%3A%7B%22anchor%22%3A%22hl%3AuEiCdxlzbCM_pQopycBF8Q_KA58ioizEaWNJqlKxGrdlSjg%22%2C%22href%22%3A%22hl%3AuEiBu8_7A4JQ1l9cRkxrInZ-2cxgeuoerMOueXmRI-mmfog%22%2C%22profile%22%3A%22https%3A%2F%2Fw3id.org%2Forb%23v0%22%2C%22rel%22%3A%22linkset%22%2C%22type%22%3A%5B%22AnchorLink%22%5D%7D%2C%22id%22%3A%22https%3A%2F%2Forb.domain2.com%2Fvc%2F65a306e4-1f86-480c-9fbd-c5e627363f0d%22%2C%22issuanceDate%22%3A%222022-08-26T15%3A26%3A20.114938493Z%22%2C%22issuer%22%3A%22https%3A%2F%2Forb.domain2.com%22%2C%22proof%22%3A%5B%7B%22created%22%3A%222022-08-26T15%3A26%3A20.116657916Z%22%2C%22domain%22%3A%22https%3A%2F%2Forb.domain2.com%22%2C%22proofPurpose%22%3A%22assertionMethod%22%2C%22proofValue%22%3A%22z63YhBwGe5h5y3ChrjTCeSXxFNf98krSDCP3FGQDRSFFCFbC7BryMpR5gaboGiaqtDRY4tNqUSZPHHHDr7jT3jSzd%22%2C%22type%22%3A%22Ed25519Signature2020%22%2C%22verificationMethod%22%3A%22did%3Aweb%3Aorb.domain2.com%23W51yCsfyP-3uyHi9BhTTd9qBzPM14YaQk2A0bCybRbU%22%7D%2C%7B%22created%22%3A%222022-08-26T15%3A26%3A20.243Z%22%2C%22domain%22%3A%22http%3A%2F%2Forb.vct%3A8077%2Fmaple2020%22%2C%22proofPurpose%22%3A%22assertionMethod%22%2C%22proofValue%22%3A%22zr7L6vWBgVBLwPsbGnd59RWiv2t96wvwHCgRwjvLo3D69mvKpmQx6XE9qL2vR7c92LNE8xL58BAbGLWJqVb9WJBW%22%2C%22type%22%3A%22Ed25519Signature2020%22%2C%22verificationMethod%22%3A%22did%3Aweb%3Aorb.domain1.com%23c9lXUEfQVRceUV6FdwzzR19EMv4nZE-eopNnSmxum14%22%7D%5D%2C%22type%22%3A%5B%22VerifiableCredential%22%2C%22AnchorCredential%22%5D%7D",
 "type": "application/ld+json"
 }
]
 }
]
}

 Witness Policy Endpoint

Witness Policy Endpoint

Endpoint: /policy

POST

Configures the witness policy as per Witness Policy.

Example

Request:

POST /policy HTTP/1.1
Host: orb.domain1.com
Content-Type: text/plain

MinPercent(100,batch) AND MinPercent(50,system)

GET

Retrieves the current witness policy as per Witness Policy.

Example

Request:

GET /policy HTTP/1.1
Host: orb.domain1.com
Accept: text/plain

Response:

MinPercent(100,batch) AND MinPercent(50,system)

 VC Endpoints

VC Endpoints

Endpoint: /vc/[id]

GET

Returns the verifiable credential for the given ID.

Example

GET /vc/57cf856f-e489-47dd-8f4e-65ea9524d6ea HTTP/1.1
Host: orb.domain2.com
Accept: application/ld+json
Accept-Encoding: gzip, deflate

Response contains the verifiable credential:

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/activityanchors/v1",
 "https://w3id.org/security/suites/ed25519-2020/v1"
],
 "credentialSubject": {
 "anchor": "hl:uEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ",
 "href": "hl:uEiAIMnHwbdHbpWbL3OlruU1xtqW-Potpi0bW0ioXFCZ94w",
 "profile": "https://w3id.org/orb#v0",
 "rel": "linkset",
 "type": [
 "AnchorLink"
]
 },
 "id": "https://orb.domain5.com/vc/2a649ce3-3412-4ca7-953c-bf89e333c3db",
 "issuanceDate": "2022-09-20T20:57:11.776289881Z",
 "issuer": "did:web:orb.domain5.com:services:anchor",
 "proof": [
 {
 "created": "2022-09-20T20:57:11.782036216Z",
 "domain": "https://orb.domain5.com",
 "proofPurpose": "assertionMethod",
 "proofValue": "z3VUDMo8tksYYD14crKHQx7HZLtJPwi7V4g2az1puHDhRYxTXSFQ3a2Qch7Az8niyQ1TXdKKaWzjvXoYNFUbJJmr9",
 "type": "Ed25519Signature2020",
 "verificationMethod": "did:web:orb.domain5.com#H72rWxdnDTaf69z2OkDLUG0z7XtFkBY_WmG9__U060Y"
 },
 {
 "created": "2022-09-20T20:57:11.966Z",
 "domain": "http://orb.vct:8077/maple2020",
 "proofPurpose": "assertionMethod",
 "proofValue": "z54WJu6r64W6Fq4LfiVzojHYHkwo4aVEMQ1KA15XYUhqwZPFwByqeV9Dwi3UPFPfKUsUsVUh92edAD1nGsd6n2nf6",
 "type": "Ed25519Signature2020",
 "verificationMethod": "did:web:orb.domain1.com#K3CezR1_tXyZSNbgdFbikNxkPCypfZ1bcJFh9NcsJlk"
 }
],
 "type": [
 "VerifiableCredential",
 "AnchorCredential"
]
}

 Log Endpoint

Log Endpoint

Endpoint: /log

GET

Returns the URL of the current VCT log.

Example

GET /log HTTP/1.1
Host: orb.domain1.com

Response contains the log URL:

https://orb.vct:8077/maple2020

POST

Sets the URL of the current VCT log.

Example

POST /log HTTP/1.1
Host: orb.domain1.com
Content-Type: text/plain

https://orb.vct:8077/maple2020

 System Endpoints

System Endpoints

Various endpoints are defined to configure Orb and to retrieve system information, such as Orb version and metrics.

Accept List

Endpoint: /services/orb/acceptlist

An accept list is a database of server URLs that are authorized for a particular type of operation.

GET

The accept-list is retrieved using a GET request to this endpoint.

Example

Request:

GET /services/orb/acceptlist HTTP/1.1
Host: orb.domain1.com
Accept: application/ld+json
Accept-Encoding: gzip, deflate

Response contains the accept-list for both follow and invite-witness:

[
 {
 "type": "follow",
 "url": [
 "https://orb.domain2.com/services/orb",
 "https://orb.domain3.com/services/orb"
]
 },
 {
 "type": "invite-witness",
 "url": [
 "https://orb.domain2.com/services/orb",
 "https://orb.domain3.com/services/orb"
]
 }
]

POST

The accept-list is updated using a POST request to this endpoint. Services may
be added and removed from the accept-list for Follow and Invite witness activities.

Example

Request to add domain2 and domain3 to the follow and invite-witness accept-list as well as remove domain4
from the follow accept-list:

POST /services/orb/acceptlist HTTP/1.1
Host: orb.domain1.com
Content-Type: application/ld+json"
Accept-Encoding: gzip, deflate

[
 {
 "add": [
 "https://orb.domain2.com/services/orb",
 "https://orb.domain3.com/services/orb"
],
 "remove": [
 "https://orb.domain4.com/services/orb",
],
 "type": "follow"
 },
 {
 "add": [
 "https://orb.domain2.com/services/orb",
 "https://orb.domain3.com/services/orb"
],
 "type": "invite-witness"
 }
]

Allowed Anchor Origins

Endpoint: /allowedorigins

An allowed anchor origins is a database of server URIs that are authorized for DID create operations.

GET

The allowed anchor origins are retrieved using a GET request to this endpoint.

Example

Request:

GET /allowedorigins HTTP/1.1
Host: orb.domain1.com
Accept: application/ld+json

Response contains the anchor origins:

[
 "https://orb.domain1.com",
 "https://orb.domain2.com"
]

POST

The allowed anchor origins are updated using a POST request to this endpoint. URIs may be added and removed.

Example

Request to add domain3 and domain4, and remove domain2 from the allowed anchor origins list:

POST /allowedorigins HTTP/1.1
Host: orb.domain1.com
Content-Type: application/json"

{
 "add": [
 "https://orb.domain3.com",
 "https://orb.domain4.com"
],
 "remove": [
 "https://orb.domain2.com"
]
}

Node Info Endpoints

The NodeInfo endpoints provide general information about an Orb server, including the version, the number
of posts (Create [https://trustbloc.github.io/activityanchors/#create-activity] activities) and the number of
comments (Like [https://trustbloc.github.io/activityanchors/#like-activity] activities). Two versions of NodeInfo
are supported:
v2.0 [https://nodeinfo.diaspora.software/docson/index.html#/ns/schema/2.0#$$expand] and
v2.1 [https://nodeinfo.diaspora.software/docson/index.html#/ns/schema/2.1#$$expand].

Node Info version 2.0

Endpoint: /nodeinfo/2.0

GET

Example

Request:

GET /nodeinfo/2.0 HTTP/1.1
Host: orb.domain1.com
Accept: application/json
Accept-Encoding: gzip, deflate

Response:

{
 "version": "2.0",
 "software": {
 "name": "Orb",
 "version": "0.1.2"
 },
 "protocols": [
 "activitypub"
],
 "services": {
 "inbound": [],
 "outbound": []
 },
 "openRegistrations": false,
 "usage": {
 "users": {
 "total": 1
 },
 "localPosts": 4,
 "localComments": 6
 }
}

Node Info version 2.1

Endpoint: /nodeinfo/2.1

GET

Example

Request:

GET /nodeinfo/2.1 HTTP/1.1
Host: orb.domain1.com
Accept: application/json
Accept-Encoding: gzip, deflate

Response:

{
 "version": "2.1",
 "software": {
 "name": "Orb",
 "version": "0.1.2",
 "repository": "https://github.com/trustbloc/orb"
 },
 "protocols": [
 "activitypub"
],
 "services": {
 "inbound": [],
 "outbound": []
 },
 "openRegistrations": false,
 "usage": {
 "users": {
 "total": 1
 },
 "localPosts": 4,
 "localComments": 6
 }
}

Metrics Endpoint

Endpoint: /metrics

GET

This endpoint retrieves metrics data that may be consumed by a prometheus [https://prometheus.io/] server.

Request:

GET /metrics HTTP/1.1
Host: orb.domain1.com
Accept: text/plain
Accept-Encoding: gzip, deflate

Response:

HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 6.49e-05
go_gc_duration_seconds{quantile="0.25"} 0.0001778
go_gc_duration_seconds{quantile="0.5"} 0.0002633
go_gc_duration_seconds{quantile="0.75"} 0.0004953
go_gc_duration_seconds{quantile="1"} 0.0111963
go_gc_duration_seconds_sum 0.1513972
go_gc_duration_seconds_count 248
HELP go_goroutines Number of goroutines that currently exist.
TYPE go_goroutines gauge
go_goroutines 104
HELP orb_activitypub_inbox_handler_seconds The time (in seconds) that it takes to handle an activity posted to the inbox.
TYPE orb_activitypub_inbox_handler_seconds histogram
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="0.005"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="0.01"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="0.025"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="0.05"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="0.1"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="0.25"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="0.5"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="1"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="2.5"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="5"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="10"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Accept",le="+Inf"} 1
orb_activitypub_inbox_handler_seconds_sum{type="Accept"} 0.1140751
orb_activitypub_inbox_handler_seconds_count{type="Accept"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="0.005"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="0.01"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="0.025"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="0.05"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="0.1"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="0.25"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="0.5"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="1"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="2.5"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="5"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="10"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Announce",le="+Inf"} 0
orb_activitypub_inbox_handler_seconds_sum{type="Announce"} 0
orb_activitypub_inbox_handler_seconds_count{type="Announce"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="0.005"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="0.01"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="0.025"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="0.05"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="0.1"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="0.25"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="0.5"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="1"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="2.5"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="5"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="10"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Create",le="+Inf"} 1
orb_activitypub_inbox_handler_seconds_sum{type="Create"} 0.2653678
orb_activitypub_inbox_handler_seconds_count{type="Create"} 1
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="0.005"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="0.01"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="0.025"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="0.05"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="0.1"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="0.25"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="0.5"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="1"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="2.5"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="5"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="10"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="Follow",le="+Inf"} 0
orb_activitypub_inbox_handler_seconds_sum{type="Follow"} 0
orb_activitypub_inbox_handler_seconds_count{type="Follow"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="InviteWitness",le="0.005"} 0
orb_activitypub_inbox_handler_seconds_bucket{type="InviteWitness",le="0.01"} 0
. . .

Health Check Endpoint

Endpoint: /healthcheck

The health check endpoint performs a check on various subsystems. If the health check fails then an HTTP status,
503: Service Unavailable, is returned along with details of which component(s) failed. An HTTP status, 200: OK, is
returned when Orb is ready to receive requests. Following are the returned statuses:

	mqStatus - Message Broker

	success - The message broker is connected.

	not connected = The message broker is not connected.

	dbStatus - Database - Contains “success” or an error message.

	success - a Database ‘ping’ has succeeded.

	error message - The error message received from the database ‘ping’.

	kmsStatus - Key Management Service - Contains “success” or an error message.

	success - The KMS health check succeeded.

	error message - The error message received from the KMS health check.

	vctStatus - Verifiable Credential Transparency

	success - VCT health check succeeded.

	disabled - VCT is disabled for the Orb domain. (This status is not considered to be a failed status.)

	log endpoint not configured - VCT is enabled but the log endpoint has not yet been configured. (This status is not considered to be a failed status.)

	error message - The error message returned from the VCT health check.

GET

Example

Request:

GET /healthcheck HTTP/1.1
Host: orb.domain1.com
Accept: application/json

Response:

{
 "mqStatus": "success",
 "vctStatus": "disabled",
 "dbStatus": "success",
 "kmsStatus": "success",
 "currentTime": "2022-06-24T20:10:43.0115373Z"
}

Log Levels Endpoint

Endpoint: /loglevels

The log levels endpoint allows you to dynamically update the log levels of individual modules and/or to change the default log level.
The format of the spec is as follows:

module1=level1:module2=level2:module3=level3:defaultLevel

Valid log levels are: error, warning, info, debug.

GET

Example

Request:

GET /loglevels HTTP/1.1
Host: orb.domain1.com
Accept: text/plain

Response:

activitypub_store=INFO:expiry-service=INFO:task-manager=INFO:watermill=INFO:DEBUG

POST

Example

POST /loglevels HTTP/1.1
Host: orb.domain1.com
Content-Type: text/plain

activitypub_store=INFO:expiry-service=INFO:task-manager=INFO:watermill=INFO:DEBUG

 Startup Parameters

Startup Parameters

This section enumerates the startup parameters for an Orb server. Parameters in the
Required Parameters section are required, otherwise the server will not start.
Parameters in the Optional Parameters section are optional and will use a
default value if not specified.

Required Parameters

Following are the required parameters for an Orb server.

host-url

	Arg

	Env

	–host-url

	ORB_HOST_URL

URL to run the orb-server instance on. Format: HostName:Port.

external-endpoint

	Arg

	Env

	–external-endpoint

	ORB_EXTERNAL_ENDPOINT

External endpoint that clients use to invoke services. This endpoint is used to generate IDs of anchor credentials and ActivityPub objects and should be resolvable by external clients. Format: HostName[:Port].

service-id

	Arg

	Env

	–service-id

	ORB_SERVICE_ID

The ID of the ActivityPub service. By default, the ID is composed of the external endpoint appended with /services/orb.
For example, if external-endpoint is set to https://alice.example.com then the service ID will
be https://alice.example.com/services/orb. The value may be set to a different path, e.g.
https://alice.example.com/services/anchor, or it can be set to a DID, e.g. did:web:alice.example.com:services:anchor.
NOTE: The host of the ID must be the same as the host specified by external-endpoint.

database-type

	Arg

	Env

	–database-type

	DATABASE_TYPE

The type of database to use for everything except key storage. Supported options: mem, couchdb, mongodb.

vc-sign-private-keys

	Arg

	Env

	–vc-sign-private-keys

	ORB_VC_SIGN_PRIVATE_KEYS

VC Sign Private Keys base64 (ED25519Type). For example, key1=privatekeyBase64Value,key2=privatekeyBase64Value

vc-sign-active-key-id

	Arg

	Env -

	–vc-sign-active-key-id

	ORB_VC_SIGN_ACTIVE_KEY_ID

VC Sign Active Key ID (ED25519Type).

vc-sign-keys-id

	Arg

	Env -

	–vc-sign-keys-id

	ORB_VC_SIGN_KEYS_ID

VC Sign Keys id in kms (ED25519Type).

http-sign-private-key

	Arg

	Env

	–http-sign-private-key

	ORB_HTTP_SIGN_PRIVATE_KEY

HTTP Sign Private Key base64 (ED25519Type). For example, key1=privatekeyBase64Value

http-sign-active-key-id

	Arg

	Env -

	–http-sign-active-key-id

	ORB_HTTP_SIGN_ACTIVE_KEY_ID

HTTP Sign Active Key ID (ED25519Type).

did-namespace

	Arg

	Env

	–did-namespace

	DID_NAMESPACE

DID Namespace.

cas-type

	Arg

	Env

	–cas-type

	CAS_TYPE

The type of the Content Addressable Storage (CAS). Supported options: local, ipfs.

anchor-credential-signature-suite

	Arg

	Env

	–anchor-credential-signature-suite

	ANCHOR_CREDENTIAL_SIGNATURE_SUITE

Anchor credential signature suite (required).

Optional Parameters

Below are the optional parameters for an Orb server. If not specified then the default value is used.

metrics-provider-name

	Arg

	Env

	Default

	–metrics-provider-name

	ORB_METRICS_PROVIDER_NAME

	

The name of the metrics provider. If not set then metrics are not gathered.

Valid values:

	prometheus - Prometheus [https://prometheus.io/] metrics provider. Parameter prom-http-url must be set.

prom-http-url

	Arg

	Env

	Default

	–prom-http-url

	ORB_PROM_HTTP_URL

	

URL that exposes the Prometheus metrics endpoint. Format: host:port. A Prometheus [https://prometheus.io/] server
may be used to periodically read the metrics at this URL. (Note that the metrics endpoint would be at http://host:port/metrics.)

sync-timeout

	Arg

	Env

	Default

	–sync-timeout

	ORB_SYNC_TIMEOUT

	1

Total time in seconds to resolve config values.

vct-enabled

	Arg

	Env

	Default

	–vct-enabled

	ORB_VCT_ENABLED

	false

Enables setting VCT log. If enabled VCT URL has to be configured via cli log command or REST /log endpoint.

vct-proof-monitoring-interval

	Arg

	Env

	Default

	–vct-proof-monitoring-interval

	VCT_PROOF_MONITORING_INTERVAL

	10s

The interval in which VCTs are monitored to ensure that proofs are anchored.

vct-log-monitoring-interval

	Arg

	Env

	Default

	–vct-log-monitoring-interval

	VCT_LOG_MONITORING_INTERVAL

	10s

The interval in which VCT logs are monitored to ensure that they are consistent.

vct-log-monitoring-max-tree-size

	Arg

	Env

	Default

	–vct-log-monitoring-max-tree-size

	VCT_LOG_MONITORING_MAX_TREE_SIZE

	50000

The maximum tree size for which new VCT logs will be re-constructed in order to verify signed tree head.

vct-log-monitoring-get-entries-range

	Arg

	Env

	Default

	–vct-log-monitoring-get-entries-range

	VCT_LOG_MONITORING_GET_ENTRIES_RANGE

	1000

The maximum number of entries to be retrieved from VCT log in one attempt. Has to be less or equal than 1000 due to VCT limitation.

vct-log-entries-store-enabled

	Arg

	Env

	Default

	–vct-log-entries-store-enabled

	VCT_LOG_ENTRIES_STORE_ENABLED

	false

Enables storing of log entries during log monitoring. Defaults to false if not set.

anchor-status-monitoring-interval

	Arg

	Env

	Default

	–anchor-status-monitoring-interval

	ANCHOR_STATUS_MONITORING_INTERVAL

	5s

The interval in which ‘in-process’ anchors are monitored to ensure that they will be witnessed(completed) as per
policy.

anchor-status-in-process-grace-period

	Arg

	Env

	Default

	–anchor-status-in-process-grace-period

	ANCHOR_STATUS_IN_PROCESS_GRACE_PERIOD

	30s

The period in which witnesses will not be re-selected for ‘in-process’ anchors.

kms-store-endpoint

	Arg

	Env

	Default

	–kms-store-endpoint

	ORB_KMS_STORE_ENDPOINT

	

KMS storage URL. If this parameter is not set then ORB_KMS_ENDPOINT needs to be set.

kms-endpoint

	Arg

	Env

	Default

	–kms-endpoint

	ORB_KMS_ENDPOINT

	

Remote KMS URL. If this parameter is not set then ORB_KMS_STORE_ENDPOINT needs to be set.

secret-lock-key-path

	Arg

	Env

	Default

	–secret-lock-key-path

	ORB_SECRET_LOCK_KEY_PATH

	

The path to the file with key to be used by local secret lock. If missing noop service lock is used.

discovery-domain

	Arg

	Env

	Default

	–discovery-domain

	ORB_DISCOVERY_DOMAIN

	

Discovery domain for this domain. Format: HostName

tls-systemcertpool

	Arg

	Env

	Default

	–tls-systemcertpool

	ORB_TLS_SYSTEMCERTPOOL

	false

Use system certificate pool. Possible values true and false. Defaults to false if not set.

tls-cacerts

	Arg

	Env

	Default

	–tls-cacerts

	ORB_TLS_CACERTS

	

Comma-Separated list of ca certs path.

tls-certificate

	Arg

	Env

	Default

	–tls-certificate

	ORB_TLS_CERTIFICATE

	

TLS certificate for ORB server.

tls-key

	Arg

	Env

	Default

	–tls-key

	ORB_TLS_KEY

	

TLS key for ORB server.

did-aliases

	Arg

	Env

	Default

	–did-aliases

	DID_ALIASES

	

Aliases for this did method.

ipfs-url

	Arg

	Env

	Default

	–ipfs-url

	IPFS_URL

	

Enables IPFS support. If set, this Orb server will use the node at the given URL. To use the public ipfs.io node, set this to https://ipfs.io (or http://ipfs.io). If using ipfs.io, then the CAS type flag must be set to local since the ipfs.io node is read-only. If the URL doesn’t include a scheme, then HTTP will be used by default.

replicate-local-cas-writes-in-ipfs

	Arg

	Env

	Default

	–replicate-local-cas-writes-in-ipfs

	REPLICATE_LOCAL_CAS_WRITES_IN_IPFS

	false

If enabled, writes to the local CAS will also be replicated in IPFS. This setting only takes effect if this server has both a local CAS and IPFS enabled. If the IPFS node is set to ipfs.io, then this setting will be disabled since ipfs.io does not support writes. Supported options: false, true. Defaults to false if not set.

mq-url

	Arg

	Env

	Default

	–mq-url

	MQ_URL

	

The URL of the message broker. If not specified then an in-memory message queue is used.

mq-connect-max-retries

	Arg

	Env

	Default

	–mq-connect-max-retries

	MQ_CONNECT_MAX_RETRIES

	25

The maximum number of retries to connect to an AMQP service, after which the server will panic.

mq-observer-pool

	Arg

	Env

	Default

	–mq-observer-pool

	MQ_OBSERVER_POOL

	5

The size of the Observer queue subscriber pool. When a message is posted to the Observer queue, it is
handled by a pool of subscribers. If not specified then the default size will be used.

mq-outbox-pool

	Arg

	Env

	Default

	–mq-outbox-pool

	MQ_OUTBOX_POOL

	5

The size of the Outbox queue subscriber pool. When a message is posted to the Outbox queue, it is
handled by a pool of subscribers. If not specified then the default size will be used.

mq-inbox-pool

	Arg

	Env

	Default

	–mq-inbox-pool

	MQ_INBOX_POOL

	5

The size of the Inbox queue subscriber pool. When a message is posted to the Inbox queue, it is
handled by a pool of subscribers. If not specified then the default size will be used.

mq-max-connection-channels

	Arg

	Env

	Default

	–mq-max-connection-channels

	MQ_MAX_CONNECTION_CHANNELS

	1000

The maximum number of channels per connection.

mq-publisher-channel-pool-size

	Arg

	Env

	Default

	–mq-publisher-channel-pool-size

	MQ_PUBLISHER_POOL

	25

The size of a channel pool for an AMQP publisher (default is 25). If set to 0 then a channel pool is not used and a new channel is opened/closed for every publish to a queue.

mq-publisher-confirm-delivery

	Arg

	Env

	Default

	–mq-publisher-confirm-delivery

	MQ_PUBLISHER_CONFIRM_DELIVERY

	true

Turns on delivery confirmation of published messages. If set to true then the AMQP publisher waits
until a confirmation is received from the AMQP server to guarantee that the message is delivered.

mq-redelivery-max-attempts

	Arg

	Env

	Default

	–mq-redelivery-max-attempts

	MQ_REDELIVERY_MAX_ATTEMPTS

	30

The maximum number of redelivery attempts for a failed message.

mq-redelivery-initial-interval

	Arg

	Env

	Default

	–mq-redelivery-initial-interval

	MQ_REDELIVERY_INITIAL_INTERVAL

	2s

The delay for the initial redelivery attempt.

mq-redelivery-multiplier

	Arg

	Env

	Default

	–mq-redelivery-multiplier

	MQ_REDELIVERY_MULTIPLIER

	1.5

The multiplier for a redelivery attempt. For example, if set to 1.5 and the previous
redelivery interval was 2s then the next redelivery interval is set 3s.

mq-redelivery-max-interval

	Arg

	Env

	Default

	–mq-redelivery-max-interval

	MQ_REDELIVERY_MAX_INTERVAL

	1m

The maximum delay for a redelivery.

op-queue-pool

	Arg

	Env

	Default

	–op-queue-pool

	OP_QUEUE_POOL

	5

The size of the operation queue subscriber pool. If <=1 then a pool will not be created.

op-queue-task-monitor-interval

	Arg

	Env

	Default

	–op-queue-task-monitor-interval

	OP_QUEUE_TASK_MONITOR_INTERVAL

	10s

The interval (period) in which operation queue tasks from other server instances are monitored.

op-queue-task-expiration

	Arg

	Env

	Default

	–op-queue-task-expiration

	OP_QUEUE_TASK_EXPIRATION

	30s

The maximum time that an operation queue task can exist in the database before it is considered to have expired.
Once expired, any other server instance may delete the task and repost operations associated with the task
to the queue, so that they will be processed by another Orb instance.

cid-version

	Arg

	Env

	Default

	–cid-version

	CID_VERSION

	1

The version of the CID format to use for generating CIDs. Supported options: 0, 1. If not set, defaults to 1.

batch-writer-timeout

	Arg

	Env

	Default

	–batch-writer-timeout

	BATCH_WRITER_TIMEOUT

	60s

Maximum time (in millisecond) in-between cutting batches.

database-url

	Arg

	Env

	Default

	–database-url

	DATABASE_URL

	

The URL (or connection string) of the database. Not needed if using memstore. For CouchDB, include the username:password@ text if required.

database-prefix

	Arg

	Env

	Default

	–database-prefix

	DATABASE_PREFIX

	

An optional prefix to be used when creating and retrieving underlying databases. This allows
a database to be shared by multiple Orb domains. (Mainly used in development environments.)

kms-secrets-database-type

	Arg

	Env

	Default

	–kms-secrets-database-type

	KMSSECRETS_DATABASE_TYPE

	

The type of database to use for storage of KMS secrets. Supported options: mem, couchdb, mongodb.

kms-secrets-database-url

	Arg

	Env

	Default

	–kms-secrets-database-url

	KMSSECRETS_DATABASE_URL

	

The URL (or connection string) of the database. Not needed if using memstore. For CouchDB, include the username:password@ text if required.

kms-secrets-database-prefix

	Arg

	Env

	Default

	–kms-secrets-database-prefix

	KMSSECRETS_DATABASE_PREFIX

	

An optional prefix to be used when creating and retrieving the underlying KMS secrets database.
This allows a database to be shared by multiple Orb domains. (Mainly used in development environments.)

database-timeout

	Arg

	Env

	Default

	–database-timeout

	DATABASE_TIMEOUT

	10s

The timeout for database requests. For example, ’30s’ for a 30 second timeout. Currently this setting only applies if you’re using MongoDB.

anchor-credential-domain

	Arg

	Env

	Default

	–anchor-credential-domain

	ANCHOR_CREDENTIAL_DOMAIN

	ORB_EXTERNAL_ENDPOINT

Anchor credential domain.

allowed-origins

	Arg

	Env

	Default

	–allowed-origins

	ALLOWED_ORIGINS

	

Allowed origins are the bootstrap anchor origins for this did method. Anchor origins may be updated using the allowedorigins REST API.

allowed-origins-cache-expiration

	Arg

	Env

	Default

	–allowed-origins-cache-expiration

	ALLOWED_ORIGINS_CACHE_EXPIRATION

	1m

The expiration time(period) of the allowed origins cache.

max-witness-delay

	Arg

	Env

	Default

	–max-witness-delay

	MAX_WITNESS_DELAY

	10m

Maximum witness response time.

sign-with-local-witness

	Arg

	Env

	Default

	–sign-with-local-witness

	SIGN_WITH_LOCAL_WITNESS

	true

Always sign with local witness flag (default true).

discovery-domains

	Arg

	Env

	Default

	–discovery-domains

	DISCOVERY_DOMAINS

	

Discovery domains.

discovery-minimum-resolvers

	Arg

	Env

	Default

	–discovery-minimum-resolvers

	DISCOVERY_MINIMUM_RESOLVERS

	1

Discovery minimum resolvers number.

enable-http-signatures

	Arg

	Env

	Default

	–enable-http-signatures

	HTTP_SIGNATURES_ENABLED

	true

Set to “true” to enable HTTP signatures in ActivityPub.

enable-did-discovery

	Arg

	Env

	Default

	–enable-did-discovery

	DID_DISCOVERY_ENABLED

	false

Set to “true” to enable did discovery.

enable-unpublished-operation-store

	Arg

	Env

	Default

	–enable-unpublished-operation-store

	UNPUBLISHED_OPERATION_STORE_ENABLED

	false

Set to “true” to enable un-published operation store. Used to enable storing unpublished operations and including them when resolving documents.

unpublished-operation-store-operation-types

	Arg

	Env

	Default

	–unpublished-operation-store-operation-types

	UNPUBLISHED_OPERATION_STORE_OPERATION_TYPES

	create, update

Comma-separated list of operation types. Used if unpublished operation store is enabled.
Default value is “create,update” which enables storing unpublished ‘create’ and ‘update’ operations into
unpublished store and using those unpublished ‘create’ and ‘update’ operations for resolving document.

include-unpublished-operations-in-metadata

	Arg

	Env

	Default

	–include-unpublished-operations-in-metadata

	INCLUDE_UNPUBLISHED_OPERATIONS_IN_METADATA

	false

Set to “true” to include unpublished operations in metadata.

include-published-operations-in-metadata

	Arg

	Env

	Default

	–include-published-operations-in-metadata

	INCLUDE_PUBLISHED_OPERATIONS_IN_METADATA

	false

Set to “true” to include published operations in metadata.

resolve-from-anchor-origin

	Arg

	Env

	Default

	–resolve-from-anchor-origin

	RESOLVE_FROM_ANCHOR_ORIGIN

	false

Set to “true” to resolve from anchor origin.

verify-latest-from-anchor-origin

	Arg

	Env

	Default

	–verify-latest-from-anchor-origin

	VERIFY_LATEST_FROM_ANCHOR_ORIGIN

	false

Set to “true” to verify latest operations against anchor origin.

auth-tokens-def

	Arg

	Env

	Default

	–auth-tokens-def

	ORB_AUTH_TOKENS_DEF

	

Contains the authorization definition for each of the REST endpoints. Format:

<path-expr>|<read-token1>&<read-token2>&...>|<write-token1>&<write-token2>&...>,<path-expr>

Where:

	path-expr contains a regular expression for a path. Path expressions are processed in the order they are specified.

	read-token defines a token for a read (GET) operation. If not specified then authorization is not performed.

	write-token defines a token for a write (POST) operation. If not specified then authorization is not performed.

If no definition is included for an endpoint then authorization is NOT performed for that endpoint.

Example:

ORB_AUTH_TOKENS_DEF=/services/orb/outbox|admin&read|admin,/services/orb/.*|read&admin

	The client requires a ‘read’ or ‘admin’ token in order to view the outbox’s contents

	The client requires an ‘admin’ token in order to post to the outbox

	The client requires a ‘read’ or ‘admin’ token in order to perform a GET on any endpoint starting with /services/orb/

auth-tokens

	Arg

	Env

	Default

	–auth-tokens

	ORB_AUTH_TOKENS

	

Specifies the actual values of the tokens defined in ORB_AUTH_TOKENS_DEF.

Example:

admin=ADMIN_PASSWORD,read=READ_PASSWORD

client-auth-tokens-def

	Arg

	Env

	Default

	–client-auth-tokens-def

	ORB_CLIENT_AUTH_TOKENS_DEF

	ORB_AUTH_TOKENS_DEF

Follows the same rules as ORB_AUTH_TOKENS_DEF but is used by the Orb client transport to
determine whether an HTTP signature is required for an outbound HTTP request. If not specified then it is assumed
to be the same as ORB_AUTH_TOKENS_DEF.

client-auth-tokens

	Arg

	Env

	Default

	–client-auth-tokens

	ORB_CLIENT_AUTH_TOKENS

	ORB_AUTH_TOKENS

Specifies the actual values of the tokens defined in ORB_CLIENT_AUTH_TOKENS_DEF. If not specified then it is assumed to be the same as ORB_AUTH_TOKENS.

activitypub-page-size

	Arg

	Env

	Default

	–activitypub-page-size

	ACTIVITYPUB_PAGE_SIZE

	50

The maximum page size for an ActivityPub collection or ordered collection.

enable-dev-mode

	Arg

	Env

	Default

	–enable-dev-mode

	DEV_MODE_ENABLED

	false

Set to “true” to enable dev mode. When dev mode is enabled, no TLS is used.

enable-maintenance-mode

	Arg

	Env

	Default

	–enable-maintenance-mode

	MAINTENANCE_MODE_ENABLED

	false

Set to “true” to enable maintenance mode.

When maintenance mode is enabled:

	Health check returns status OK (200) even if errors are detected

	Sidetree operations and resolution endpoints are not available (503)

	Activity pub inbox is not available (503)

nodeinfo-refresh-interval

	Arg

	Env

	Default

	–nodeinfo-refresh-interval

	NODEINFO_REFRESH_INTERVAL

	15s

The interval for refreshing NodeInfo data. For example, ’30s’ for a 30 second interval.

ipfs-timeout

	Arg

	Env

	Default

	–ipfs-timeout

	IPFS_TIMEOUT

	20s

The timeout for IPFS requests. For example, ’30s’ for a 30 second timeout.

context-provider-url

	Arg

	Env

	Default

	–context-provider-url

	ORB_CONTEXT_PROVIDER_URL

	

Comma-separated list of remote context provider URLs to get JSON-LD contexts from.”

unpublished-operation-lifetime

	Arg

	Env

	Default

	–unpublished-operation-lifetime

	UNPUBLISHED_OPERATION_LIFETIME

	5m

How long unpublished operations remain stored before expiring (and thus, being deleted some time later). For example, ‘1m’ for a 1 minute lifespan. Defaults to 1 minute if not set.

task-manager-check-interval

	Arg

	Env

	Default

	–task-manager-check-interval

	TASK_MANAGER_CHECK_INTERVAL

	10s

How frequently to check for scheduled tasks. For example, a setting of ’10s’ will cause the task manager to check for outstanding tasks every 10s. Defaults to 10 seconds if not set.

data-expiry-check-interval

	Arg

	Env

	Default

	–data-expiry-check-interval

	DATA_EXPIRY_CHECK_INTERVAL

	1m

How frequently to check for (and delete) any expired data. For example, a setting of ‘1m’ will cause the expiry service to run a check every 1 minute. Defaults to 1 minute if not set.

follow-auth-policy

	Arg

	Env

	Default

	–follow-auth-policy

	FOLLOW_AUTH_POLICY

	accept-all

The type of authorization to use when a ‘Follow’ ActivityPub request is received. Possible values are: ‘accept-all’ and ‘accept-list’. The value, ‘accept-all’, indicates that this server will accept any ‘Follow’ request. The value, ‘accept-list’, indicates that the service sending the ‘Follow’ request must be included in an ‘accept list’. Defaults to ‘accept-all’ if not set.

invite-witness-auth-policy

	Arg

	Env

	Default

	–invite-witness-auth-policy

	INVITE_WITNESS_AUTH_POLICY

	accept-all

The type of authorization to use when a ‘Invite’ witness ActivityPub request is received. Possible values are: ‘accept-all’ and ‘accept-list’. The value, ‘accept-all’, indicates that this server will accept any ‘Invite’ request for a witness. The value, ‘accept-list’, indicates that the service sending the ‘Invite’ witness request must be included in an ‘accept list’. Defaults to ‘accept-all’ if not set.

http-timeout

	Arg

	Env

	Default

	–http-timeout

	HTTP_TIMEOUT

	20s

The timeout for http requests. For example, ’30s’ for a 30 second timeout.

http-dial-timeout

	Arg

	Env

	Default

	–http-dial-timeout

	HTTP_DIAL_TIMEOUT

	2s

The timeout for HTTP dial. For example, ’30s’ for a 30 second timeout.

sync-interval

	Arg

	Env

	Default

	–sync-interval

	ANCHOR_EVENT_SYNC_INTERVAL

	1m

The interval in which anchor events are synchronized with other services that this service is following. Defaults to 1m if not set.

sync-min-activity-age

	Arg

	Env

	Default

	–sync-min-activity-age

	ANCHOR_EVENT_SYNC_MIN_ACTIVITY_AGE

	1m

The minimum age of an anchor activity to be synchronized. The activity will be processed only if its age is
greater than this value. Defaults to 1m if not set.

apclient-cache-size

	Arg

	Env

	Default

	–apclient-cache-size

	ACTIVITYPUB_CLIENT_CACHE_SIZE

	100

The maximum size of an ActivityPub service and public key cache.

apclient-cache-Expiration

	Arg

	Env

	Default

	–apclient-cache-Expiration

	ACTIVITYPUB_CLIENT_CACHE_EXPIRATION

	10m

The expiration time of an ActivityPub service and public key cache.

apiri-cache-size

	Arg

	Env

	Default

	–apiri-cache-size

	ACTIVITYPUB_IRI_CACHE_SIZE

	100

The maximum size of an ActivityPub actor IRI cache.

apiri-cache-Expiration

	Arg

	Env

	Default

	–apiri-cache-Expiration

	ACTIVITYPUB_IRI_CACHE_EXPIRATION

	1m

The expiration time of an ActivityPub actor IRI cache.

server-idle-timeout

	Arg

	Env

	Default

	–server-idle-timeout

	SERVER_IDLE_TIMEOUT

	20s

The idle timeout for the HTTP server. For example, ’30s’ for a 30 second timeout.

witness-policy-cache-expiration

	Arg

	Env

	Default

	–witness-policy-cache-expiration

	WITNESS_POLICY_CACHE_EXPIRATION

	30s

The expiration time(period) of witness policy cache. Default value is 30s.

anchor-data-uri-media-type

	Arg

	Env

	Default

	–anchor-data-uri-media-type

	ANCHOR_DATA_URI_MEDIA_TYPE

	application/json

The media type for data URIs in an anchor Linkset. Possible values are ‘application/json’ and
‘application/gzip;base64’. If ‘application/json’ is specified then the content of the data URIs
in the anchor Linkset are encoded as an escaped JSON string. If ‘application/gzip;base64’ is
specified then the content is compressed with gzip and base64 encoded.

sidetree-protocol-versions

	Arg

	Env

	Default

	–sidetree-protocol-versions

	SIDETREE_PROTOCOL_VERSIONS

	1.0

Comma-separated list of Sidetree protocol versions.

current-sidetree-protocol-version

	Arg

	Env

	Default

	–current-sidetree-protocol-version

	CURRENT_SIDETREE_PROTOCOL_VERSION

	

One of available Sidetree protocol versions. Defaults to latest Sidetree protocol version.

log-level

	Arg

	Env

	Default

	–log-level

	LOG_LEVEL

	INFO

Sets the log levels for individual modules as well as the default log level. The format of the spec is as follows:

module1=level1:module2=level2:module3=level3:defaultLevel

Valid log levels are: error, warning, info, debug.

Example:

activitypub_store=INFO:expiry-service=INFO:task-manager=INFO:watermill=INFO:DEBUG

tracing-provider

	Arg

	Env

	Default

	–tracing-provider

	ORB_TRACING_PROVIDER

	

The name of the tracing provider. If not set then tracing is disabled.

Valid values:

	JAEGER - Jaeger [https://www.jaegertracing.io/] tracing provider. Parameter tracing-collector-url must be set.

tracing-collector-url

	Arg

	Env

	Default

	–tracing-collector-url

	ORB_TRACING_COLLECTOR_URL

	

URL to which tracing data is sent.

tracing-service-name

	Arg

	Env

	Default

	–tracing-service-name

	ORB_TRACING_SERVICE_NAME

	orb

The name of the service as will be displayed in the tracing console.

 Data Model

Data Model

	Anchor Linkset

 Anchor Linkset

Anchor Linkset

The Anchor linkset [https://www.rfc-editor.org/rfc/rfc9264.html] is a JSON document that contains a link to a batch of document
operations along with a link to a verifiable credential containing proofs from one or more witnesses. This document is stored
in Content Addressible Storage using the multihash of the document as
the key. The multihash is used in the first segment of the DID (after did:orb)
of a canonical Orb DID. This multihash specifies the latest anchor object that contains a create or recover operation for the
Sidetree DID suffix. (See did:orb [https://trustbloc.github.io/did-method-orb/#format].)

Document Operation Batch

The batch of document operations is represented as a linkset [https://www.rfc-editor.org/rfc/rfc9264.html]. This document
contains the DIDs that were anchored, as well as the hashlink of the previous anchor of the DID (if any).

{
 "linkset": [
 {
 "anchor": "hl:uEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ",
 "author": [
 {
 "href": "did:web:orb.domain5.com:services:anchor"
 }
],
 "item": [
 {
 "href": "did:orb:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q:EiAISUte9hAoUQFyxGyzZBOLJiVOSo_6NvQI1_KTSrZEuw",
 "previous": [
 "hl:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q"
]
 },
 {
 "href": "did:orb:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q:EiCA9cT2WkrRbpVqvK9NYnfYL8oAXIGHozjzN_w9cetyJA",
 "previous": [
 "hl:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q"
]
 },
 {
 "href": "did:orb:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q:EiALeU9pNA-LPMW5HsmMNhJ_-JgTVP_fYnkA2InI8RtkzA",
 "previous": [
 "hl:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q"
]
 },
 {
 "href": "did:orb:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q:EiApG3pQlSpclipU8ImLKpllbWlPCWHjobK_ASmGAjTeYA",
 "previous": [
 "hl:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q"
]
 },
 {
 "href": "did:orb:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q:EiAtOCeMIculDkB6mm8aSj0m928dwKfM8wqLk-iSo81V7w",
 "previous": [
 "hl:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q"
]
 }
],
 "profile": [
 {
 "href": "https://w3id.org/orb#v0"
 }
]
 }
]
}

The fields of the Document Operation Batch linkset are described below.

Link Context (anchor)

The linkset contains one link context object [https://www.rfc-editor.org/rfc/rfc9264.html#section-4.2.2]
where the context is specified by the “anchor” member. The “anchor” member contains the multihash of the Sidetree
core index file [https://identity.foundation/sidetree/spec/#core-index-file]. A number of link relations are defined
for the anchor, which are described below.

Author Relation

The author relation specifies the author (creator) of the linkset.

Profile Relation

The profile relation specifies the version of the application that was used to generate this linkset. For example,
the profile, “https://w3id.org/orb#v0”, indicates that the linkset was generated by Orb version 0.

Item Relation

The item relation contains an array of the DIDs that were created or updated. The “href” member contains the DID and
the “previous” member contains the hashlink of the previous anchor (in the case where the DID was updated).

NOTE: If the DID was created, then the “href” member contains a
non-canonical [https://trustbloc.github.io/did-method-orb/#example-an-orb-did-without-anchoring-information] DID and
the “previous” member is not present. In the case of a DID update, the DID is in the
canonical [https://trustbloc.github.io/did-method-orb/#example-a-canonical-orb-did] form and the “previous” attribute
is also present.

Related Links Document

The Related Links document is represented as a linkset [https://www.rfc-editor.org/rfc/rfc9264.html]. This document
contains full hashlinks of the objects referenced in the Document Operation Batch.
(The Document Operation Batch file only contains the multihashes of the core index file and previous anchors,
whereas this document contains full hashlinks, including resolvable links to the files.) For example:

{
 "linkset": [
 {
 "anchor": "hl:uEiAIMnHwbdHbpWbL3OlruU1xtqW-Potpi0bW0ioXFCZ94w",
 "profile": [
 {
 "href": "https://w3id.org/orb#v0"
 }
],
 "up": [
 {
 "href": "hl:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q:uoQ-CeEtodHRwczovL29yYi5kb21haW4xLmNvbS9jYXMvdUVpREk0Ty01ck9QbUtZbm1uaHFnaHpLZmNkbHhjeHhWS2phaWp1LUxKUFJwM1F4QmlwZnM6Ly9iYWZrcmVpZ2k0ZHgzdGxoZDR5dXl0enU2ZGtxaW9tdTdvaG14YzR5NGt1dmRuaXVvNTZmc2o1ZGozdQ"
 }
],
 "via": [
 {
 "href": "hl:uEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ:uoQ-BeEtodHRwczovL29yYi5kb21haW41LmNvbS9jYXMvdUVpQ0pZUzVKaW4tM1pTd0JUX1JUMGMwelowWjZCM19vMGRkRERDTVpYbFV4QVE"
 }
]
 }
]
}

The fields of the Related Links document are described below.

Link Context (anchor)

This linkset contains one link context object [https://www.rfc-editor.org/rfc/rfc9264.html#section-4.2.2]
where the context is specified by the “anchor” member. The “anchor” member contains the multihash of the contents of the
canonicalized [https://www.rfc-editor.org/rfc/rfc8785] Document Operation Batch.

A number of link relations are defined for the anchor, which are described below.

Profile Relation

The profile relation specifies the version of the application that was used to generate this linkset. For example,
the profile, “https://w3id.org/orb#v0”, indicates that the linkset was generated by Orb version 0.

Up Relation

The up relation contains hashlinks [https://datatracker.ietf.org/doc/html/draft-sporny-hashlink-07] of the previous
anchors that were referenced in the Document Operation Batch. Each hashlink contains the multihash
of the anchor as well as one or more links to the data. For example:

hl:uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q:uoQ-CeEtodHRwczovL29yYi5kb21haW4xLmNvbS9jYXMvdUVpREk0Ty01ck9QbUtZbm1uaHFnaHpLZmNkbHhjeHhWS2phaWp1LUxKUFJwM1F4QmlwZnM6Ly9iYWZrcmVpZ2k0ZHgzdGxoZDR5dXl0enU2ZGtxaW9tdTdvaG14YzR5NGt1dmRuaXVvNTZmc2o1ZGozdQ

The above hashlink contains the resource hash, uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q, and the following
links to the anchor file:

https://orb.domain1.com/cas/uEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q
ipfs://bafkreigi4dx3tlhd4yuytzu6dkqiomu7ohmxc4y4kuvdniuo56fsj5dj3u

Via Relation

The via relation contains the hashlink [https://datatracker.ietf.org/doc/html/draft-sporny-hashlink-07] of the Sidetree
core index file [https://identity.foundation/sidetree/spec/#core-index-file]. For example:

hl:uEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ:uoQ-BeEtodHRwczovL29yYi5kb21haW41LmNvbS9jYXMvdUVpQ0pZUzVKaW4tM1pTd0JUX1JUMGMwelowWjZCM19vMGRkRERDTVpYbFV4QVE

The hashlink above contains the hash of the core index file, uEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ, and links to the core index file:

https://orb.domain5.com/cas/uEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ

Anchor Credential Document

The Anchor Credential [https://trustbloc.github.io/activityanchors/#anchorcredential] document is a
Verifiable Credential [https://www.w3.org/TR/vc-data-model/] containing witness proofs. For example:

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/activityanchors/v1",
 "https://w3id.org/security/suites/ed25519-2020/v1"
],
 "credentialSubject": {
 "anchor": "hl:uEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ",
 "href": "hl:uEiAIMnHwbdHbpWbL3OlruU1xtqW-Potpi0bW0ioXFCZ94w",
 "profile": "https://w3id.org/orb#v0",
 "rel": "linkset",
 "type": [
 "AnchorLink"
]
 },
 "id": "https://orb.domain5.com/vc/2a649ce3-3412-4ca7-953c-bf89e333c3db",
 "issuanceDate": "2022-09-20T20:57:11.776289881Z",
 "issuer": "did:web:orb.domain5.com:services:anchor",
 "proof": [
 {
 "created": "2022-09-20T20:57:11.782036216Z",
 "domain": "https://orb.domain5.com",
 "proofPurpose": "assertionMethod",
 "proofValue": "z3VUDMo8tksYYD14crKHQx7HZLtJPwi7V4g2az1puHDhRYxTXSFQ3a2Qch7Az8niyQ1TXdKKaWzjvXoYNFUbJJmr9",
 "type": "Ed25519Signature2020",
 "verificationMethod": "did:web:orb.domain5.com#H72rWxdnDTaf69z2OkDLUG0z7XtFkBY_WmG9__U060Y"
 },
 {
 "created": "2022-09-20T20:57:11.966Z",
 "domain": "http://orb.vct:8077/maple2020",
 "proofPurpose": "assertionMethod",
 "proofValue": "z54WJu6r64W6Fq4LfiVzojHYHkwo4aVEMQ1KA15XYUhqwZPFwByqeV9Dwi3UPFPfKUsUsVUh92edAD1nGsd6n2nf6",
 "type": "Ed25519Signature2020",
 "verificationMethod": "did:web:orb.domain1.com#K3CezR1_tXyZSNbgdFbikNxkPCypfZ1bcJFh9NcsJlk"
 }
],
 "type": [
 "VerifiableCredential",
 "AnchorCredential"
]
}

The “credentialSubject” object is a link [https://www.rfc-editor.org/rfc/rfc5988] object containing the following members:

type

The JSON-LD type, “AnchorLink”, which indicates that this object is a link [https://www.rfc-editor.org/rfc/rfc5988].

Link Context (anchor)

The “anchor” member specifies the context of the link, which is the hash of the Sidetree
core index file [https://identity.foundation/sidetree/spec/#core-index-file]. Several link relations are defined
for the anchor, which are described below.

profile

The profile relation specifies the version of the application that was used to generate the credential subject.
For example, the profile, “https://w3id.org/orb#v0”, indicates that the credential subject was generated by
Orb version 0.

href

The href member contains the target IRI, which is the hash of the canonicalized [https://www.rfc-editor.org/rfc/rfc8785]
Document Operation Batch.

rel

The rel relation describes the type of the target object. In this case we use “linkset” since the target (href) is the
Document Operation Batch linkset.

Anchor Linkset Document

The Anchor Linkset is a document that links all of the above documents: Document Operation Batch,
Related Links, and Anchor Credential. For example:

{
 "linkset": [
 {
 "anchor": "hl:uEiAIMnHwbdHbpWbL3OlruU1xtqW-Potpi0bW0ioXFCZ94w",
 "author": [
 {
 "href": "did:web:orb.domain5.com:services:anchor"
 }
],
 "original": [
 {
 "href": "data:application/json,%7B%22linkset%22%3A%5B%7B%22anchor%22%3A%22hl%3AuEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ%22%2C%22author%22%3A%5B%7B%22href%22%3A%22did%3Aweb%3Aorb.domain5.com%3Aservices%3Aanchor%22%7D%5D%2C%22item%22%3A%5B%7B%22href%22%3A%22did%3Aorb%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AEiAISUte9hAoUQFyxGyzZBOLJiVOSo_6NvQI1_KTSrZEuw%22%2C%22previous%22%3A%5B%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%22%5D%7D%2C%7B%22href%22%3A%22did%3Aorb%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AEiCA9cT2WkrRbpVqvK9NYnfYL8oAXIGHozjzN_w9cetyJA%22%2C%22previous%22%3A%5B%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%22%5D%7D%2C%7B%22href%22%3A%22did%3Aorb%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AEiALeU9pNA-LPMW5HsmMNhJ_-JgTVP_fYnkA2InI8RtkzA%22%2C%22previous%22%3A%5B%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%22%5D%7D%2C%7B%22href%22%3A%22did%3Aorb%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AEiApG3pQlSpclipU8ImLKpllbWlPCWHjobK_ASmGAjTeYA%22%2C%22previous%22%3A%5B%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%22%5D%7D%2C%7B%22href%22%3A%22did%3Aorb%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AEiAtOCeMIculDkB6mm8aSj0m928dwKfM8wqLk-iSo81V7w%22%2C%22previous%22%3A%5B%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%22%5D%7D%5D%2C%22profile%22%3A%5B%7B%22href%22%3A%22https%3A%2F%2Fw3id.org%2Forb%23v0%22%7D%5D%7D%5D%7D",
 "type": "application/linkset+json"
 }
],
 "profile": [
 {
 "href": "https://w3id.org/orb#v0"
 }
],
 "related": [
 {
 "href": "data:application/json,%7B%22linkset%22%3A%5B%7B%22anchor%22%3A%22hl%3AuEiAIMnHwbdHbpWbL3OlruU1xtqW-Potpi0bW0ioXFCZ94w%22%2C%22profile%22%3A%5B%7B%22href%22%3A%22https%3A%2F%2Fw3id.org%2Forb%23v0%22%7D%5D%2C%22up%22%3A%5B%7B%22href%22%3A%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AuoQ-CeEtodHRwczovL29yYi5kb21haW4xLmNvbS9jYXMvdUVpREk0Ty01ck9QbUtZbm1uaHFnaHpLZmNkbHhjeHhWS2phaWp1LUxKUFJwM1F4QmlwZnM6Ly9iYWZrcmVpZ2k0ZHgzdGxoZDR5dXl0enU2ZGtxaW9tdTdvaG14YzR5NGt1dmRuaXVvNTZmc2o1ZGozdQ%22%7D%5D%2C%22via%22%3A%5B%7B%22href%22%3A%22hl%3AuEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ%3AuoQ-BeEtodHRwczovL29yYi5kb21haW41LmNvbS9jYXMvdUVpQ0pZUzVKaW4tM1pTd0JUX1JUMGMwelowWjZCM19vMGRkRERDTVpYbFV4QVE%22%7D%5D%7D%5D%7D",
 "type": "application/linkset+json"
 }
],
 "replies": [
 {
 "href": "data:application/json,%7B%22%40context%22%3A%5B%22https%3A%2F%2Fwww.w3.org%2F2018%2Fcredentials%2Fv1%22%2C%22https%3A%2F%2Fw3id.org%2Factivityanchors%2Fv1%22%2C%22https%3A%2F%2Fw3id.org%2Fsecurity%2Fsuites%2Fed25519-2020%2Fv1%22%5D%2C%22credentialSubject%22%3A%7B%22anchor%22%3A%22hl%3AuEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ%22%2C%22href%22%3A%22hl%3AuEiAIMnHwbdHbpWbL3OlruU1xtqW-Potpi0bW0ioXFCZ94w%22%2C%22profile%22%3A%22https%3A%2F%2Fw3id.org%2Forb%23v0%22%2C%22rel%22%3A%22linkset%22%2C%22type%22%3A%5B%22AnchorLink%22%5D%7D%2C%22id%22%3A%22https%3A%2F%2Forb.domain5.com%2Fvc%2F2a649ce3-3412-4ca7-953c-bf89e333c3db%22%2C%22issuanceDate%22%3A%222022-09-20T20%3A57%3A11.776289881Z%22%2C%22issuer%22%3A%22did%3Aweb%3Aorb.domain5.com%3Aservices%3Aanchor%22%2C%22proof%22%3A%5B%7B%22created%22%3A%222022-09-20T20%3A57%3A11.782036216Z%22%2C%22domain%22%3A%22https%3A%2F%2Forb.domain5.com%22%2C%22proofPurpose%22%3A%22assertionMethod%22%2C%22proofValue%22%3A%22z3VUDMo8tksYYD14crKHQx7HZLtJPwi7V4g2az1puHDhRYxTXSFQ3a2Qch7Az8niyQ1TXdKKaWzjvXoYNFUbJJmr9%22%2C%22type%22%3A%22Ed25519Signature2020%22%2C%22verificationMethod%22%3A%22did%3Aweb%3Aorb.domain5.com%23H72rWxdnDTaf69z2OkDLUG0z7XtFkBY_WmG9__U060Y%22%7D%2C%7B%22created%22%3A%222022-09-20T20%3A57%3A11.966Z%22%2C%22domain%22%3A%22http%3A%2F%2Forb.vct%3A8077%2Fmaple2020%22%2C%22proofPurpose%22%3A%22assertionMethod%22%2C%22proofValue%22%3A%22z54WJu6r64W6Fq4LfiVzojHYHkwo4aVEMQ1KA15XYUhqwZPFwByqeV9Dwi3UPFPfKUsUsVUh92edAD1nGsd6n2nf6%22%2C%22type%22%3A%22Ed25519Signature2020%22%2C%22verificationMethod%22%3A%22did%3Aweb%3Aorb.domain1.com%23K3CezR1_tXyZSNbgdFbikNxkPCypfZ1bcJFh9NcsJlk%22%7D%5D%2C%22type%22%3A%5B%22VerifiableCredential%22%2C%22AnchorCredential%22%5D%7D",
 "type": "application/ld+json"
 }
]
 }
]
}

The fields of the anchor linkset are described below.

Link Context (anchor)

The linkset contains one link context object [https://www.rfc-editor.org/rfc/rfc9264.html#section-4.2.2]
where the context is specified by the “anchor” member. The “anchor” member contains the multihash of the
canonicalized [https://www.rfc-editor.org/rfc/rfc8785] Document Operation Batch file.
A number of link relations are defined for the anchor, which are described below.

Author Relation

The author relation specifies the author (creator) of the linkset.

Profile Relation

The profile relation specifies the version of the application that was used to generate this linkset. For example,
the profile, “https://w3id.org/orb#v0”, indicates that the linkset was generated by Orb version 0.

Original Relation

The original relation links to the Document Operation Batch file. In the above
example anchor linkset, a data URL [https://datatracker.ietf.org/doc/html/rfc2397] is used for the target of this relation
such that the document operation batch is embedded in the href. NOTE: The contents of the data URL may be resolved by copying the
href and pasting it into a browser.

Related Relation

The related relation links to the Related Links Document. In the above
example anchor linkset, a data URL [https://datatracker.ietf.org/doc/html/rfc2397] is used for the target of this relation
such that the Related Links Document is embedded in the href. NOTE: The contents of the data URL may be resolved by copying the
href and pasting it into a browser.

Replies Relation

The replies relation links to the Anchor Credential Document. In the above example anchor linkset,
a data URL [https://datatracker.ietf.org/doc/html/rfc2397] is used for the target of this relation such that the anchor
credential is embedded in the href. NOTE: The contents of the data URL may be resolved by copying the href and pasting
it into a browser.

AnchorEvent

An AnchorEvent is an ActivityPub [https://www.w3.org/TR/activitypub/] object that contains the Anchor Linkset and is embedded in
Create [https://trustbloc.github.io/activityanchors/#create-activity] and
Announce [https://trustbloc.github.io/activityanchors/#announce-activity] activities to propagate the Anchor Linkset to
other Orb domains. For example:

{
 "@context": "https://w3id.org/activityanchors/v1",
 "object": {
 "linkset": [
 {
 "anchor": "hl:uEiAIMnHwbdHbpWbL3OlruU1xtqW-Potpi0bW0ioXFCZ94w",
 "author": [
 {
 "href": "did:web:orb.domain5.com:services:anchor"
 }
],
 "original": [
 {
 "href": "data:application/json,%7B%22linkset%22%3A%5B%7B%22anchor%22%3A%22hl%3AuEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ%22%2C%22author%22%3A%5B%7B%22href%22%3A%22did%3Aweb%3Aorb.domain5.com%3Aservices%3Aanchor%22%7D%5D%2C%22item%22%3A%5B%7B%22href%22%3A%22did%3Aorb%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AEiAISUte9hAoUQFyxGyzZBOLJiVOSo_6NvQI1_KTSrZEuw%22%2C%22previous%22%3A%5B%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%22%5D%7D%2C%7B%22href%22%3A%22did%3Aorb%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AEiCA9cT2WkrRbpVqvK9NYnfYL8oAXIGHozjzN_w9cetyJA%22%2C%22previous%22%3A%5B%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%22%5D%7D%2C%7B%22href%22%3A%22did%3Aorb%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AEiALeU9pNA-LPMW5HsmMNhJ_-JgTVP_fYnkA2InI8RtkzA%22%2C%22previous%22%3A%5B%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%22%5D%7D%2C%7B%22href%22%3A%22did%3Aorb%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AEiApG3pQlSpclipU8ImLKpllbWlPCWHjobK_ASmGAjTeYA%22%2C%22previous%22%3A%5B%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%22%5D%7D%2C%7B%22href%22%3A%22did%3Aorb%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AEiAtOCeMIculDkB6mm8aSj0m928dwKfM8wqLk-iSo81V7w%22%2C%22previous%22%3A%5B%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%22%5D%7D%5D%2C%22profile%22%3A%5B%7B%22href%22%3A%22https%3A%2F%2Fw3id.org%2Forb%23v0%22%7D%5D%7D%5D%7D",
 "type": "application/linkset+json"
 }
],
 "profile": [
 {
 "href": "https://w3id.org/orb#v0"
 }
],
 "related": [
 {
 "href": "data:application/json,%7B%22linkset%22%3A%5B%7B%22anchor%22%3A%22hl%3AuEiAIMnHwbdHbpWbL3OlruU1xtqW-Potpi0bW0ioXFCZ94w%22%2C%22profile%22%3A%5B%7B%22href%22%3A%22https%3A%2F%2Fw3id.org%2Forb%23v0%22%7D%5D%2C%22up%22%3A%5B%7B%22href%22%3A%22hl%3AuEiDI4O-5rOPmKYnmnhqghzKfcdlxcxxVKjaiju-LJPRp3Q%3AuoQ-CeEtodHRwczovL29yYi5kb21haW4xLmNvbS9jYXMvdUVpREk0Ty01ck9QbUtZbm1uaHFnaHpLZmNkbHhjeHhWS2phaWp1LUxKUFJwM1F4QmlwZnM6Ly9iYWZrcmVpZ2k0ZHgzdGxoZDR5dXl0enU2ZGtxaW9tdTdvaG14YzR5NGt1dmRuaXVvNTZmc2o1ZGozdQ%22%7D%5D%2C%22via%22%3A%5B%7B%22href%22%3A%22hl%3AuEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ%3AuoQ-BeEtodHRwczovL29yYi5kb21haW41LmNvbS9jYXMvdUVpQ0pZUzVKaW4tM1pTd0JUX1JUMGMwelowWjZCM19vMGRkRERDTVpYbFV4QVE%22%7D%5D%7D%5D%7D",
 "type": "application/linkset+json"
 }
],
 "replies": [
 {
 "href": "data:application/json,%7B%22%40context%22%3A%5B%22https%3A%2F%2Fwww.w3.org%2F2018%2Fcredentials%2Fv1%22%2C%22https%3A%2F%2Fw3id.org%2Factivityanchors%2Fv1%22%2C%22https%3A%2F%2Fw3id.org%2Fsecurity%2Fsuites%2Fed25519-2020%2Fv1%22%5D%2C%22credentialSubject%22%3A%7B%22anchor%22%3A%22hl%3AuEiCJYS5Jin-3ZSwBT_RT0c0zZ0Z6B3_o0ddDDCMZXlUxAQ%22%2C%22href%22%3A%22hl%3AuEiAIMnHwbdHbpWbL3OlruU1xtqW-Potpi0bW0ioXFCZ94w%22%2C%22profile%22%3A%22https%3A%2F%2Fw3id.org%2Forb%23v0%22%2C%22rel%22%3A%22linkset%22%2C%22type%22%3A%5B%22AnchorLink%22%5D%7D%2C%22id%22%3A%22https%3A%2F%2Forb.domain5.com%2Fvc%2F2a649ce3-3412-4ca7-953c-bf89e333c3db%22%2C%22issuanceDate%22%3A%222022-09-20T20%3A57%3A11.776289881Z%22%2C%22issuer%22%3A%22did%3Aweb%3Aorb.domain5.com%3Aservices%3Aanchor%22%2C%22proof%22%3A%5B%7B%22created%22%3A%222022-09-20T20%3A57%3A11.782036216Z%22%2C%22domain%22%3A%22https%3A%2F%2Forb.domain5.com%22%2C%22proofPurpose%22%3A%22assertionMethod%22%2C%22proofValue%22%3A%22z3VUDMo8tksYYD14crKHQx7HZLtJPwi7V4g2az1puHDhRYxTXSFQ3a2Qch7Az8niyQ1TXdKKaWzjvXoYNFUbJJmr9%22%2C%22type%22%3A%22Ed25519Signature2020%22%2C%22verificationMethod%22%3A%22did%3Aweb%3Aorb.domain5.com%23H72rWxdnDTaf69z2OkDLUG0z7XtFkBY_WmG9__U060Y%22%7D%2C%7B%22created%22%3A%222022-09-20T20%3A57%3A11.966Z%22%2C%22domain%22%3A%22http%3A%2F%2Forb.vct%3A8077%2Fmaple2020%22%2C%22proofPurpose%22%3A%22assertionMethod%22%2C%22proofValue%22%3A%22z54WJu6r64W6Fq4LfiVzojHYHkwo4aVEMQ1KA15XYUhqwZPFwByqeV9Dwi3UPFPfKUsUsVUh92edAD1nGsd6n2nf6%22%2C%22type%22%3A%22Ed25519Signature2020%22%2C%22verificationMethod%22%3A%22did%3Aweb%3Aorb.domain1.com%23K3CezR1_tXyZSNbgdFbikNxkPCypfZ1bcJFh9NcsJlk%22%7D%5D%2C%22type%22%3A%5B%22VerifiableCredential%22%2C%22AnchorCredential%22%5D%7D",
 "type": "application/ld+json"
 }
]
 }
]
 },
 "type": "AnchorEvent",
 "url": "hl:uEiDmX8aJHcpNUyKg8bTuxG7haDCqLWZ49iOXXd-SW3K-3A:uoQ-BeEtodHRwczovL29yYi5kb21haW41LmNvbS9jYXMvdUVpRG1YOGFKSGNwTlV5S2c4YlR1eEc3aGFEQ3FMV1o0OWlPWFhkLVNXM0stM0E"
}

The “object” field contains the Anchor Linkset and the “url” field contains the hashlink of the Anchor Linkset, which includes
the links to the Anchor Linkset. For example:

hl:uEiDmX8aJHcpNUyKg8bTuxG7haDCqLWZ49iOXXd-SW3K-3A:uoQ-BeEtodHRwczovL29yYi5kb21haW41LmNvbS9jYXMvdUVpRG1YOGFKSGNwTlV5S2c4YlR1eEc3aGFEQ3FMV1o0OWlPWFhkLVNXM0stM0E

The hashlink above contains the multihash of the Anchor Linkset, uEiDmX8aJHcpNUyKg8bTuxG7haDCqLWZ49iOXXd-SW3K-3A and a link to the file:

https://orb.domain5.com/cas/uEiDmX8aJHcpNUyKg8bTuxG7haDCqLWZ49iOXXd-SW3K-3A

 Projects

Projects

Edge

	Edge-Adapter [https://github.com/trustbloc/edge-adapter]

	Edge-Agent [https://github.com/trustbloc/edge-agent]

	Edge-Core [https://github.com/trustbloc/edge-core]

	Edge-Sandbox [https://github.com/trustbloc/edge-sandbox]

	Edge-Service [https://github.com/trustbloc/edge-service]

Agent SDK

	Agent SDK [https://github.com/trustbloc/agent-sdk#bindings]

Bloc Hub

	Bloc-Hub [https://trustbloc.readthedocs.io/projects/bloc-hub/en/latest/]

Sidetree

	Orb [https://github.com/trustbloc/orb/blob/main/README.md]

	Sidetree-Node [https://trustbloc.readthedocs.io/projects/sidetree-node/en/latest/]

Upstream Project

	Hyperledger Aries [https://www.hyperledger.org/projects/aries]

	DIF [https://identity.foundation/]

 Verifiable Credential Service (VCS)

Verifiable Credential Service (VCS)

What is a Verifiable Credential (VC)?

We use credentials everyday. A driver’s license issued by the government certify
that we are capable of operating a vehicle on the road. A Permanent Residence card
shows the immigration status of an individual.

A verifiable credential is then a document whose contents can be cryptographically proven/verified ([VC-TERM]) to be true.
A VC could hold the same data that a physical credential does.
Within the scope of TrustBloc projects, this act of verifying credentials can be done with the aid
of technology such as digital identities and signatures. The use of digital signatures adds to the integrity
of a credential when it is presented.

Holders of verifiable credentials can generate verifiable presentations and then share these
verifiable presentations with verifiers to prove they possess verifiable credentials with certain characteristics.
Both verifiable credentials and verifiable presentations can be transmitted rapidly, making them more convenient
than their physical counterparts when trying to establish trust at a distance. ([VC-DEF])

Edge-Service

TrustBloc’s Edge-Service [https://github.com/trustbloc/edge-service] contains servers that handle the issuance and verification of verifiable credentials.

Configuring the service

Edge-Service can be used in the following modes:

	Issuer

	Verifier

	Holder

	Governance

Get vcs-rest from GitHub packages [https://github.com/trustbloc/edge-service/packages].

Configuration flags for the server:

Start vc-rest inside the edge-service

Usage:
 vc-rest start [flags]

Flags:
 --api-token string Check for bearer token in the authorization header (optional). Alternatively, this can be set with the following environment variable: VC_REST_API_TOKEN
 -f, --backoff-factor string If no VC is found when attempting to retrieve a VC from the EDV, this is the factor to increase the time to wait for subsequent retries after the first. Alternatively, this can be set with the following environment variable: BACKOFF-FACTOR
 -b, --bloc-domain string Bloc domain
 --database-prefix string An optional prefix to be used when creating and retrieving underlying databases. Alternatively, this can be set with the following environment variable: DATABASE_PREFIX
 -t, --database-type string The type of database to use for everything except key storage. Supported options: mem, couchdb. Alternatively, this can be set with the following environment variable: DATABASE_TYPE
 -v, --database-url string The URL of the database. Not needed if using memstore. For CouchDB, include the username:password@ text if required. Alternatively, this can be set with the following environment variable: DATABASE_URL
 -e, --edv-url string URL EDV instance is running on. Format: HostName:Port.
 --governance-claims-file string Path to governance claimsAlternatively, this can be set with the following environment variable: VC_REST_GOVERNANCE_CLAIMS_FILE
 -h, --help help for start
 -u, --host-url string URL to run the vc-rest instance on. Format: HostName:Port.
 -x, --host-url-external string Host External Name:Port This is the URL for the host server as seen externally. If not provided, then the host url will be used here. Alternatively, this can be set with the following environment variable: VC_REST_HOST_URL_EXTERNAL
 -i, --initial-backoff-millisec string If no VC is found when attempting to retrieve a VC from the EDV, this is the time to wait (in milliseconds) before the first retry attempt. Alternatively, this can be set with the following environment variable: INITIAL_BACKOFF_MILLISEC
 --kms-secrets-database-prefix string An optional prefix to be used when creating and retrieving the underlying KMS secrets database. Alternatively, this can be set with the following environment variable: KMSSECRETS_DATABASE_PREFIX
 -k, --kms-secrets-database-type string The type of database to use for storage of KMS secrets. Supported options: mem, couchdb. Alternatively, this can be set with the following environment variable: KMSSECRETS_DATABASE_TYPE
 -s, --kms-secrets-database-url string The URL of the database. Not needed if using memstore. For CouchDB, include the username:password@ text if required. It's recommended to not use the same database as the one set in the database-url flag (or the DATABASE_URL env var) since having access to the KMS secrets may allow the host of the provider to decrypt EDV encrypted documents. Alternatively, this can be set with the following environment variable: DATABASE_URL
 -l, --log-level string Logging level to set. Supported options: CRITICAL, ERROR, WARNING, INFO, DEBUG.Defaults to info if not set. Setting to debug may adversely impact performance. Alternatively, this can be set with the following environment variable: LOG_LEVEL
 -a, --max-retries string If no VC is found when attempting to retrieve a VC from the EDV, this is the maximum number of times to retry retrieval. Defaults to 5 if not set. Alternatively, this can be set with the following environment variable: MAX-RETRIES
 -m, --mode string Mode in which the vc-rest service will run. Possible values: ['issuer', 'verifier', 'holder', 'combined'] (default: combined).
 --request-tokens stringArray Tokens used for http request Alternatively, this can be set with the following environment variable: VC_REST_REQUEST_TOKENS
 --tls-cacerts stringArray Comma-Separated list of ca certs path.Alternatively, this can be set with the following environment variable: VC_REST_TLS_CACERTS
 --tls-systemcertpool string Use system certificate pool. Possible values [true] [false]. Defaults to false if not set. Alternatively, this can be set with the following environment variable: VC_REST_TLS_SYSTEMCERTPOOL
 -r, --universal-resolver-url string Universal Resolver instance is running on. Format: HostName:Port.

Example: Running in Issuer Mode

The following is a snippet of a Docker Compose TM file showing how Edge Service can be configured.
It makes use of environment variables declared here [https://github.com/trustbloc/edge-sandbox/blob/master/test/bdd/fixtures/demo/.env].

issuer.vcs.example.com:
 container_name: issuer.vcs.example.com
 image: ${VCS_IMAGE}:${VCS_IMAGE_TAG}
 environment:
 - VC_REST_HOST_URL=0.0.0.0:8070
 - VC_REST_HOST_URL_EXTERNAL=https://issuer-vcs.trustbloc.local
 - EDV_REST_HOST_URL=https://edv.trustbloc.local/encrypted-data-vaults
 - BLOC_DOMAIN=${BLOC_DOMAIN}
 - UNIVERSAL_RESOLVER_HOST_URL=https://did-resolver.trustbloc.local/1.0/identifiers
 - VC_REST_MODE=issuer
 - DATABASE_TYPE=couchdb
 - DATABASE_URL=${COUCHDB_USERNAME}:${COUCHDB_PASSWORD}@shared.couchdb:5984
 - DATABASE_PREFIX=issuer
 - KMSSECRETS_DATABASE_TYPE=couchdb
 - KMSSECRETS_DATABASE_URL=${COUCHDB_USERNAME}:${COUCHDB_PASSWORD}@shared.couchdb:5984
 - KMSSECRETS_DATABASE_PREFIX=issuer
 - VC_REST_TLS_CACERTS=/etc/tls/trustbloc-dev-ca.crt
 - VC_REST_TLS_SYSTEMCERTPOOL=true
 - VC_REST_API_TOKEN=vcs_issuer_rw_token
 - VIRTUAL_HOST=issuer-vcs.trustbloc.local
 ports:
 - 8070:8070
 entrypoint: ""
 # wait 20 seconds for couchdb to start
 command: /bin/sh -c "sleep 20;/tmp/scripts/vcs_configure.sh& vc-rest start"
 volumes:
 - ../scripts/:/tmp/scripts #https://github.com/trustbloc/edge-sandbox/tree/master/test/bdd/fixtures/scripts
 - ../keys/tls:/etc/tls
 depends_on:
 - edv.example.com
 networks:
 - demo-net

edv.example.com:
 container_name: edv.example.com
 image: ${EDV_IMAGE}:${EDV_IMAGE_TAG}
 environment:
 - EDV_HOST_URL=0.0.0.0:8081
 - EDV_DATABASE_TYPE=couchdb
 - EDV_DATABASE_URL=${COUCHDB_USERNAME}:${COUCHDB_PASSWORD}@shared.couchdb:5984
 - EDV_DATABASE_PREFIX=edv
 - VIRTUAL_HOST=edv.trustbloc.local
 ports:
 - 8081:8081
 command: start
 networks:
 - demo-net

Examples of how the other modes can be configures is available in the following repos:

	edge-sandbox [https://github.com/trustbloc/edge-sandbox/blob/master/test/bdd/fixtures/demo/docker-compose-edge-components.yml]

	edge-service [https://github.com/trustbloc/edge-service/blob/master/test/bdd/fixtures/vc-rest/docker-compose.yml]

Deploying the service

In order to deploy Edge-Service, the following components are required.

:::{note}
An example of how these components interact together is shown here [https://github.com/trustbloc/edge-sandbox/tree/master/test/bdd/fixtures/demo].
:::

Sidetree

Sidetree Fabric

[image: _images/docker-compose-sidetree-fabric.yml.png]

Sidetree Mock

[image: _images/docker-compose-sidetree-mock.yml.png]

Edge Components

[image: _images/docker-compose-edge-components.yml.png]

DID Resolvers

[image: _images/docker-compose-universal-resolver.yml.png]

DID Registrars

[image: _images/docker-compose-universal-registrar.yml.png]

VCS Components (CHAPI + VC Services)

[image: _images/vcs_component_diagram.svg]

Issuing a VC

In order to issue a Verifiable Credential, you will need to first create a profile.

1. Issue a VC

HTTP POST /{profile}/credentials/issueCredential

{
 "credential":{
 "@context":[
 "https://www.w3.org/2018/credentials/v1"
],
 "id":"http://example.edu/credentials/1872",
 "type":"VerifiableCredential",
 "credentialSubject":{
 "id":"did:example:ebfeb1f712ebc6f1c276e12ec21"
 },
 "issuer":{
 "id":"did:example:76e12ec712ebc6f1c221ebfeb1f",
 "name":"Example University"
 },
 "issuanceDate":"2010-01-01T19:23:24Z",
 "credentialStatus":{
 "id":"https://example.gov/status/24",
 "type":"CredentialStatusList2017"
 }
 },
 "options":{
 "assertionMethod":"did:trustbloc:testnet.trustbloc.local:EiAiijiRNEAflOr6ZOJN5A7BCFQD1pwFMI1MPzHr3bXezg=="
 }
}

More details here [https://github.com/trustbloc/edge-service/blob/master/docs/vc-rest/api_overview.md#3-issue-verifiable-credential---post-profilecredentialsissuecredential].

Try it here [https://w3c-ccg.github.io/vc-http-api/#/Issuer/issueCredential].

2. Compose and Issue a VC

HTTP POST /{profile}/credentials/composeAndIssueCredential

{
 "issuer":"did:example:uoweu180928901",
 "subject":"did:example:oleh394sqwnlk223823ln",
 "types":[
 "UniversityDegree"
],
 "issuanceDate":"2020-03-25T19:38:54.45546Z",
 "expirationDate":"2020-06-25T19:38:54.45546Z",
 "claims":{
 "name":"John Doe"
 },
 "evidence":{
 "id":"http://example.com/policies/credential/4",
 "type":"IssuerPolicy"
 },
 "termsOfUse":{
 "id":"http://example.com/policies/credential/4",
 "type":"IssuerPolicy"
 },
 "proofFormat":"jws",
 "proofFormatOptions":{
 "kid":"did:trustbloc:testnet.trustbloc.local:EiAtPEWAphdPVRxlKpr8N43uyLMhgF-9SFmYfINVpDIzUA==#key-1"
 }
}

More details here [https://github.com/trustbloc/edge-service/blob/master/docs/vc-rest/api_overview.md#4-compose-and-issue-verifiable-credential---post-profilecredentialscomposeandissuecredential].

Validating a VC

HTTP POST /verifier/credentials

{
 "verifiableCredential":{
 "@context":[
 "https://www.w3.org/2018/credentials/v1",
 "https://www.w3.org/2018/credentials/examples/v1"
],
 "credentialSchema":[

],
 "credentialStatus":{
 "id":"http://issuer.vc.rest.example.com:8070/status/1",
 "type":"CredentialStatusList2017"
 },
 "credentialSubject":{
 "degree":{
 "degree":"MIT",
 "type":"BachelorDegree"
 },
 "id":"did:example:ebfeb1f712ebc6f1c276e12ec21",
 "name":"Jayden Doe",
 "spouse":"did:example:c276e12ec21ebfeb1f712ebc6f1"
 },
 "id":"http://example.gov/credentials/3732",
 "issuanceDate":"2020-03-16T22:37:26.544Z",
 "issuer":{
 "id":"did:example:oakek12as93mas91220dapop092",
 "name":"University"
 },
 "proof":{
 "created":"2020-04-09T15:35:35Z",
 "jws":"eyJhbGciOiJFZERTQSIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..kN1srfFqoiejHJwxM8Y0Y9yIonAvFeF2Aoiv6_LTkPqcNXc2rXwT94-uO_PQJbxWJgTD78MvpfCJWsUSRvgCBw",
 "proofPurpose":"assertionMethod",
 "type":"Ed25519Signature2018",
 "verificationMethod":"did:trustbloc:testnet.trustbloc.local:EiD3KVRkHAHt6aLO4Kp5PSO3pNhAY_GPZXuKUekVk1uboQ==#key-1"
 },
 "type":[
 "VerifiableCredential",
 "UniversityDegreeCredential"
]
 },
 "options":{
 "checks":[
 "proof"
]
 }
}

More details here [https://github.com/trustbloc/edge-service/blob/master/docs/vc-rest/api_overview.md#1-verify-credential---post-verifiercredentials].

Try it here [https://w3c-ccg.github.io/vc-http-api/#/Verifier/verifyCredential].

Connecting to the TestNet

Service Endpoints

VC SERVICES

issuer_vcs: https://issuer.sandbox.trustbloc.dev

verifier_vcs: https://verifier.sandbox.trustbloc.dev

holder_vcs: https://holder.sandbox.trustbloc.dev

governance_vcs: https://governance.sandbox.trustbloc.dev

VC Adapters

issuer_adapter:

: rest: https://issuer-adapter.sandbox.trustbloc.dev

didcomm: https://issuer-adapter-didcomm.sandbox.trustbloc.dev

verifier_adapter: #RP/Verifier Adapter

: rest: https://verifier-adapter.sandbox.trustbloc.dev

didcomm: https://verifier-adapter-didcomm.sandbox.trustbloc.dev

hydra: https://verifier-adapter-hydra.sandbox.trustbloc.dev

hydra_admin: https://verifier-adapter-hydra-admin.sandbox.trustbloc.dev

EDV/SDS

sds: https://sds.sandbox.trustbloc.dev

resolver: https://resolver.sandbox.trustbloc.dev

registrar: https://registrar.sandbox.trustbloc.dev

kms: https://kms.sandbox.trustbloc.dev

Wallet Mediator URL

router:

: http: https://router.sandbox.trustbloc.dev

api: https://router-api.sandbox.trustbloc.dev

ws: wss://router-ws.sandbox.trustbloc.dev

router_ws: wss://router-ws.sandbox.trustbloc.dev

router_api:
agent: https://agent.sandbox.trustbloc.dev

uni_did: https://uni-did.sandbox.trustbloc.dev

registrar_v1_driver: https://registrar-v1-driver.sandbox.trustbloc.dev

resolver_sov_driver: https://resolver-sov-driver.sandbox.trustbloc.dev

resolver_veresone_driver : https://resolver-veresone-driver.sandbox.trustbloc.dev

resolver_uport_driver: https://resolver-uport-driver.sandbox.trustbloc.dev

resolver_didkey_driver: https://resolver-didkey-driver.sandbox.trustbloc.dev

Demo and 3rd party endpoints

demo_issuer: https://demo-issuer.sandbox.trustbloc.dev

demo_verifier: https://demo-verifier.sandbox.trustbloc.dev

hydra: https://hydra.sandbox.trustbloc.dev

hydra_admin: https://hydra-admin.sandbox.trustbloc.dev

strapi: https://strapi.sandbox.trustbloc.dev

cms: https://cms.sandbox.trustbloc.dev

login: https://login.sandbox.trustbloc.dev

agent_resolver_urls:

	mailto:trustbloc@https://resolver.sandbox.trustbloc.dev/1.0/identifiers

	mailto:v1@https://resolver.sandbox.trustbloc.dev/1.0/identifiers

	mailto:elem@https://resolver.sandbox.trustbloc.dev/1.0/identifiers

	mailto:sov@https://resolver.sandbox.trustbloc.dev/1.0/identifiers

	mailto:web@https://resolver.sandbox.trustbloc.dev/1.0/identifiers

	mailto:key@https://resolver.sandbox.trustbloc.dev/1.0/identifiers

Using Edge-Service

To use the demo, navigate to the Demo Issuer [https://demo-issuer.sandbox.trustbloc.dev] homepage.

Then follow the steps in the videos below for their respective demonstrations.

These demos make use of Edge-Sandbox [https://github.com/trustbloc/edge-sandbox] which is a demo environment for edge-service.

Register A Wallet

Be sure to register your wallet as in the video below:

 Key Management System (KMS)

Key Management System (KMS)

	Introduction

	Startup Parameters

	REST Endpoints

	Keys

	Key Rotation

	Auth

	CLI

	Metrics

	Caching

	User Onboarding and Recovery

 Introduction

Introduction

What is KMS?

KMS lets to manage cryptographic keys and use them to perform crypto operations. TrustBloc KMS [https://github.com/trustbloc/kms] is a
server implementation of KMS [https://github.com/hyperledger/aries-framework-go/blob/main/pkg/kms/api.go] and Crypto [https://github.com/hyperledger/aries-framework-go/blob/main/pkg/crypto/api.go] APIs from the Aries Framework Go [https://github.com/hyperledger/aries-framework-go].

It can be used as a remote KMS [https://github.com/hyperledger/aries-framework-go/blob/main/pkg/kms/webkms/remotekms.go] and a remote Crypto [https://github.com/hyperledger/aries-framework-go/blob/main/pkg/crypto/webkms/remotecrypto.go] for the Aries Framework’s webkms
implementation.

 Startup Parameters

Startup Parameters

KMS server can be run as a standalone binary or a docker container. Refer here [https://github.com/trustbloc/kms#running-kms-server] for the instructions
on how to run a server and supported startup flags and options.

 REST Endpoints

REST Endpoints

Following is a list of all REST endpoints exposed by KMS:

Server

GET /healthcheck

Returns a health check status.

KMS

POST /v1/keystores

Creates a new key store.

POST /v1/keystores/{key_store_id}/keys

Creates a new key.

PUT /v1/keystores/{key_store_id}/keys

Imports a private key.

GET /v1/keystores/{key_store_id}/keys/{key_id}

Exports a public key.

POST /v1/keystores/{key_store_id}/keys/{key_id}/rotate

Rotates the key.

POST /v1/keystores/did

Creates a DID.

Crypto

POST /v1/keystores/{key_store_id}/easyopen

Unseals a message sealed with Easy.

POST /v1/keystores/{key_store_id}/keys/{key_id}/computemac

Computes message authentication code (MAC) for data.

POST /v1/keystores/{key_store_id}/keys/{key_id}/decrypt

Decrypts a ciphertext with associated authenticated data.

POST /v1/keystores/{key_store_id}/keys/{key_id}/deriveproof

Creates a BBS+ signature proof for a list of revealed messages.

POST /v1/keystores/{key_store_id}/keys/{key_id}/easy

Seals a message.

POST /v1/keystores/{key_store_id}/keys/{key_id}/encrypt

Encrypts a message with associated authenticated data.

POST /v1/keystores/{key_store_id}/keys/{key_id}/sign

Signs a message.

POST /v1/keystores/{key_store_id}/keys/{key_id}/signmulti

Creates a BBS+ signature of messages.

POST /v1/keystores/{key_store_id}/keys/{key_id}/unwrap

Unwraps a wrapped key.

POST /v1/keystores/{key_store_id}/keys/{key_id}/verify

Verifies a signature.

POST /v1/keystores/{key_store_id}/keys/{key_id}/verifymac

Verifies whether MAC is a correct authentication code for data.

POST /v1/keystores/{key_store_id}/keys/{key_id}/verifymulti

Verifies a signature of messages (BBS+).

POST /v1/keystores/{key_store_id}/keys/{key_id}/verifyproof

Verifies a BBS+ signature proof for revealed messages.

POST /v1/keystores/{key_store_id}/keys/{key_id}/wrap

Wraps CEK using ECDH-1PU key wrapping (Authcrypt).

POST /v1/keystores/{key_store_id}/sealopen

Decrypts a payload encrypted with Seal.

POST /v1/keystores/{key_store_id}/wrap

Wraps CEK using ECDH-ES key wrapping (Anoncrypt).

 Keys

Keys

Types of the keys in KMS

	User’s working key - for operations initiated by the user (sign, wrap, encrypt, etc.).

	Secret lock key - for encrypting/decrypting other keys in the server’s DB or EDV.

	Keys for supporting EDV operations (recipient public key, MAC key).

Where keys are stored

Users’ working keys are stored either in the server’s DB (CouchDB or MongoDB) or in EDV. This depends on whether the
create key store request contains EDV options (vault URL and authorization capabilities (ZCAPs) to access vault).

When EDV is used, both recipient and MAC keys that are needed for the EDV provider are stored in the server’s DB. In EDV
data are encrypted so the private key associated with the recipient public key can decrypt them. MAC key is used
for generating deterministic document ID.

Any key that is stored in the server’s DB is encrypted with the lock key. There are 2 options for the server’s lock key:
local file or AWS KMS.

Users’ working keys are protected with the secret lock as well. There are also 2 options for the user’s secret lock key:
local key stored in the server’s DB (that key is created when the create key store request is processed and is
associated with the key store) or key based on Shamir Secret Sharing scheme. In this case, a key is generated on a
fly from 2 shares - one is stored on Auth server and the other comes in the header with each request.

Use cases

Scenario 1: server’s lock is based on AWS key, user’s lock uses local key, no EDV

In this scenario, a key for the user’s lock is created when the key store is created. That key is encrypted with an AWS
key and stored in the server’s DB. When a working key is created for the user, it is encrypted with that stored lock key.
Before using, user’s lock key should be decrypted with an AWS key.

Scenario 2: server’s lock is based on local key, user’s lock uses Shamir-based key, working keys are stored in EDV

Key for the server’s lock is stored in a local file and the path to it is specified in a startup flag or environment
variable. When a key store is created, helper recipient and MAC keys for the EDV provider are created as well. They are
encrypted with a key from the local file (server’s lock) and saved to the server’s DB. These keys are associated with
a created key store to support EDV operations.

User’s lock key is created on a fly using HKDF algorithm that expands the combined secret (from shares using Shamir
Secret Sharing) into a symmetric key. That key is used to encrypt/decrypt the user’s working keys stored in EDV.

What is the impact of losing/compromising the key

	Key

	Loss/compromise

	server’s lock key

	no/malicious access to all keys locked with that key

	user’s lock key

	no/malicious access to all user’s working keys

	user’s working key

	blocked/malicious operations with that key (signing, encrypting, etc.)

	EDV recipient key

	no/malicious access to encrypted doc in EDV

 Key Rotation

Key Rotation

There are three types of keys in KMS that can be rotated:

	user operational keys

	primary key for the user’s key store

	primary key for the server’s key store

User operational keys

A user operation key can be rotated by making a request

POST /v1/keystores/{keystore}/keys/{key}/rotate.

It will return a new URL for the rotated key.

When the key is rotated, a new key material is added, but old ones are not deleted.
New key material is used to encrypt new data.
To decrypt data at first the new key material is used. If decryption fails, old key material is used.
This allows decrypting data that were encrypted before rotation.

Key material - cryptographic data used for encrypt/decrypt operations.
Key - set of key material ordered by date, from the newest to oldest.

Key rotation is implemented using LocalKMS.Rotate from aries-framework-go.

User key store primary key

Not implemented yet.

Server key store primary key

The server key store uses AWS KMS to protect keys. AWS KMS supports automatic key rotations [https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html#rotate-keys-how-it-works].

 Auth

Auth

KMS directly doesn’t implement auth mechanism. It rely on ORY Oathkeeper [https://github.com/ory/oathkeeper].

[image: mermaid-diagram-20220314150940]

###ORY Oathkeeper
ORY Oathkeeper [https://github.com/ory/oathkeeper] is an Identity & Access Proxy (IAP) and Access Control Decision API that authorizes HTTP requests based on sets of Access Rules.
ORY Oathkeeper [https://github.com/ory/oathkeeper] is deployed in front of KMS service and is capable of authenticating and optionally authorizing access requests.

Ory Hydra

Ory Hydra is OpenID Certified OAuth 2.0 Server and OpenID Connect Provider.
Ory Hydra is not an identity provider (user sign up, user login, password reset flow), but connects to our existing identity provider through a login and consent app.

Login and consent app

Login and consent app can be any OIDC identity provider

 CLI

CLI

The KMS Command Line Interface (KMS CLI) is a unified tool that provides a consistent interface for interacting with KMS.

Create Keystore

This command is used for creating a keystore.

Usage

keystore create [flags]

Flags

	controller [string] - DID of keystore controller.

	url [string] - URL of KMS server.

	auth-token [string] - The Auth token.

	tls-cacerts [array|string] - Array of one or more CA cert paths.

	tls-systemcertpool [boolean] - Flag whether to use system certificate pool.

Example

create keystore cmd

keystore create --controller did:example:123456 --url https://localhost:8078
--tls-cacerts fixtures/keys/tls/ec-cacert.pem

Create Key

This command is used for creating keys in the keystore.

Usage

key create [flags]

Flags

	keystore [string] - ID of the keystore.

	type [string] - Type of the key.

	url [string] - URL of KMS server.

	auth-token [string] - The Auth token.

	tls-cacerts [array|string] - Array of one or more CA cert paths.

	tls-systemcertpool [boolean] - Flag whether to use system certificate pool.

Example

create key cmd

key create --keystore {keystoreID} --url https://localhost:8078 --type ED25519
--tls-cacerts fixtures/keys/tls/ec-cacert.pem

 Metrics

Metrics

KMS server records performance metrics at each subsystem. A Prometheus [https://prometheus.io/] server may be used to
periodically read the metrics at the URL KMS_METRICS_HOST/metrics. Below are the metrics defined at each subsystem.

Crypto

The Crypto metrics measure times for crypto operations.

crypto_sign_seconds

The time (in seconds) it takes to sign message.

Database

Database metrics record the times for reads, writes, bulk writes, etc.

db_put_seconds

The time (in seconds) it takes the DB to store data.

db_get_seconds

The time (in seconds) it takes the DB to retrieve data by primary key.

db_get_tags_seconds

The time (in seconds) it takes the DB to get tags.

db_get_bulk_seconds

The time (in seconds) it takes the DB to get bulk.

db_query_seconds

The time (in seconds) it takes to query for data.

db_delete_seconds

The time (in seconds) it takes to delete data.

db_batch_seconds

The time (in seconds) it takes to perform a batch update.

Key store.

The Key store metrics measure times for operations with keys in a key store.

key_store_resolve_seconds

The time (in seconds) it takes to resolve a user key store.

key_store_get_key_seconds

The time (in seconds) it takes to get a key from a user key store.

key_store_aws_secret_lock_encrypt_seconds

The time (in seconds) it takes to encrypt a key using AWS secret lock.

key_store_aws_secret_lock_decrypt_seconds

The time (in seconds) it takes to decrypt a key using AWS secret lock.

key_store_key_secret_lock_encrypt_seconds

The time (in seconds) it takes to encrypt a key using a key-based secret lock.

key_store_key_secret_lock_decrypt_seconds

The time (in seconds) it takes to decrypt a key using a key-based secret lock.

 Caching

Caching

KMS uses caching to improve the performance of several components (server’s database, users’ key stores, etc.). Caching
functionality is backed by the ristretto [https://github.com/dgraph-io/ristretto] implementation.

Caching support is enabled with KMS_CACHE_ENABLE=true environment variable (--enable-cache=true flag). This turns on
caching for operations with server’s database. Other caches can be additionally configured with further parameters.

Server’s DB cache

The server’s DB is used for storing and retrieving

	keys for server’s KMS;

	as a default option for users’ key stores (EDV is an alternative option);

	JSON-LD contexts and authorization capabilities (ZCAP-LD);

	metadata for users’ key stores.

Cache wraps [https://github.com/trustbloc/kms/blob/main/pkg/storage/cache/wrap_provider.go] the storage and acts as a proxy, so the operations with the underlying database are cached.

It’s important to note that when the server’s KMS uses cached storage, key materials are cached in an encrypted form.
The secret lock is still required to get usable keys.

Key store cache

Users’ key stores can be cached for a limited period of time set by KMS_KEY_STORE_CACHE_TTL=10m environment variable
(--key-store-cache-ttl=10m flag). The default value is 10 minutes.

This cache is especially useful when the key store uses EDV. The keys’ materials are always cached in an encrypted form.

Secret lock keys cache

In the case of using AWS KMS as a secret lock for server kms, encrypt and decrypt operations can become expensive.
To decrease the number of calls to AWS KMS, decrypted keys can be cached. Caching is enabled by default and default ttl is 10m.
To disable caching set KMS_KMS_CACHE_TTL=0s.
An appropriate ttl can be set using the same KMS_KMS_CACHE_TTL variable.

Shamir secret cache

Shamir secrets fetched from Auth Server are cached by default.
Default ttl for Shamir secrets is 10m.
To disable caching set KMS_SHAMIR_SECRET_CACHE_TTL=0s.
An appropriate ttl can be set using the same KMS_SHAMIR_SECRET_CACHE_TTL variable.

 User Onboarding and Recovery

User Onboarding and Recovery

In the TrustBloc environment, KMS server is used as an authorization KMS for supporting ZCAP-LD [https://w3c-ccg.github.io/zcap-ld/] scheme
and as an operational KMS for regular user’s crypto operations.

Both are part of the user onboarding flow in the Wallet.

[image: ../_images/onboard_user_flow.png]

Authorization KMS

Authorization KMS allows creating Controller identity (identified by a cryptographic key pair) and then using it for
signing requests in a ZCAP-LD [https://w3c-ccg.github.io/zcap-ld/] authorization model.

The key store for the Controller uses the server’s database for storing keys. These keys are encrypted with a
Shamir secret lock [https://github.com/trustbloc/kms#shamir-secret-lock].

To unlock a key store, the controller’s secret share needs to be present in a Secret-Share header for every request.
The other share comes from the Auth server. The URL of the server is configured with KMS_AUTH_SERVER_URL environment
variable (or --auth-server-url flag).

Server Key Manager [https://github.com/trustbloc/kms#architecture-overview] is protected with a Local secret lock [https://github.com/trustbloc/kms#local-secret-lock].

Operational KMS

Operational KMS manages users’ working keys and supports crypto operations with those keys.

Keys are protected with a Local secret lock [https://github.com/trustbloc/kms#local-secret-lock] and saved to the EDV server [https://github.com/trustbloc/edv] provided by
the user. EDV parameters are specified in the request upon creating a key store. Refer to the Storage [https://github.com/trustbloc/kms#storage]
section for the details.

Recipient and MAC keys for accessing an EDV server are stored in Server Key Manager [https://github.com/trustbloc/kms#architecture-overview]. A primary key
for the user’s key store lock is also saved here.

Operational KMS uses ZCAP-LD [https://w3c-ccg.github.io/zcap-ld/] authorization scheme. Requests are expected to be signed with the Authorization
KMS.

Server Key Manager [https://github.com/trustbloc/kms#architecture-overview] is protected with an AWS secret lock [https://github.com/trustbloc/kms#aws-secret-lock].

Oathkeeper

Certain KMS endpoints are protected with the OAuth scheme. TrustBloc uses Oathkeeper [https://github.com/ory/oathkeeper] as an authorization
proxy in front of KMS services to protect the following endpoints:

	POST /v1/keystores for creating a key store;

	POST /v1/keystores/did for creating a DID (e.g. controller for EDV).

An example configuration for Authorization KMS can be found here [https://github.com/trustbloc/kms/blob/main/test/bdd/fixtures/oathkeeper-config/auth-keyserver/config.yaml].

Recovery

Planned functionality.

 Adapters

Adapters

What is an Adapter?

TrustBloc’s Edge-Adapter [https://github.com/trustbloc/edge-adapter] acts as a go-between for
Relying Party (RP) and Issuer components to support DIDComm operations.

TrustBloc’s Edge-Adapter can be used to run an Issuer and an RP.

Get the adapter here [https://github.com/trustbloc/edge-adapter/tree/master/cmd/adapter-rest].

Here are the flags for the server:

Start adapter-rest inside the edge-adapter

Usage:
 adapter-rest start [flags]

Flags:
 --didcomm-db-path string Path to database. Alternatively, this can be set with the following environment variable: ADAPTER_REST_DIDCOMM_DB_PATH
 --didcomm-inbound-host string Inbound Host Name:Port. This is used internally to start the didcomm server. Alternatively, this can be set with the following environment variable: ADAPTER_REST_DIDCOMM_INBOUND_HOST
 --didcomm-inbound-host-external string Inbound Host External Name:Port. This is the URL for the inbound server as seen externally. If not provided, then the internal inbound host will be used here. Alternatively, this can be set with the following environment variable: ADAPTER_REST_DIDCOMM_INBOUND_HOST_EXTERNAL
 --dids-trustbloc-domain string URL to the did:trustbloc consortium's domain. Alternatively, this can be set with the following environment variable: ADAPTER_REST_TRUSTBLOC_DOMAIN
 --dsn string Datasource Name with credentials if required. Format must be <driver>:[//]<driver-specific-dsn>. Examples: 'mysql://root:secret@tcp(localhost:3306)/adapter', 'mem://test'. Supported drivers are [mem, mysql]. Alternatively, this can be set with the following environment variable: ADAPTER_REST_DSN
 --dsn-timeout string Total time in seconds to wait until the datasource is available before giving up. Default: seconds. Alternatively, this can be set with the following environment variable: ADAPTER_REST_DSN_TIMEOUT
 --governance-vcs-url string Governance VCS instance is running on. Format: HostName:Port.
 -h, --help help for start
 -u, --host-url string URL to run the adapter-rest instance on. Format: HostName:Port.
 --hydra-url string Base URL to the hydra service.Alternatively, this can be set with the following environment variable: ADAPTER_REST_HYDRA_URL
 --log-level string Sets the logging level. Possible values are [DEBUG, INFO, WARNING, ERROR, CRITICAL] (default is INFO). Alternatively, this can be set with the following environment variable: ADAPTER_REST_LOGLEVEL (default "INFO")
 --mode string Mode in which the edge-adapter service will run. Possible values: ['issuer', 'rp'].
 --op-url string URL for the OIDC provider.Alternatively, this can be set with the following environment variable: ADAPTER_REST_OP_URL
 --presentation-definitions-file string Path to presentation definitions file with input_descriptors.
 --request-tokens stringArray Tokens used for http request Alternatively, this can be set with the following environment variable: ADAPTER_REST_REQUEST_TOKENS
 --static-path string Path to the folder where the static files are to be hosted under /ui.Alternatively, this can be set with the following environment variable: ADAPTER_REST_STATIC_FILES
 --tls-cacerts stringArray Comma-Separated list of ca certs path. Alternatively, this can be set with the following environment variable: ADAPTER_REST_TLS_CACERTS
 --tls-serve-cert string Path to the server certificate to use when serving HTTPS. Alternatively, this can be set with the following environment variable: ADAPTER_REST_TLS_SERVE_CERT
 --tls-serve-key string Path to the private key to use when serving HTTPS. Alternatively, this can be set with the following environment variable: ADAPTER_REST_TLS_SERVE_KEY
 --tls-systemcertpool string Use system certificate pool. Possible values [true] [false]. Defaults to false if not set. Alternatively, this can be set with the following environment variable: ADAPTER_REST_TLS_SYSTEMCERTPOOL
 -r, --universal-resolver-url string Universal Resolver instance is running on. Format: HostName:Port.

RP Adapter

The Relying Party (RP) Adapter enables standard OpenID Connect flows on top of DIDComm.

Configuring the RP Adapter

The following is a snippet of a Docker Compose TM file showing how Edge Adapter [https://github.com/trustbloc/edge-adapter] can be configured for use as an RP.

rp.adapter.rest.example.com:
 container_name: rp.adapter.rest.example.com
 image: ${RP_ADAPTER_REST_IMAGE}:latest
 environment:
 - ADAPTER_REST_HOST_URL=0.0.0.0:8070
 - ADAPTER_REST_TLS_CACERTS=/etc/tls/ec-cacert.pem
 - ADAPTER_REST_GOVERNANCE_VCS_URL=http://governance.vcs.example.com:8066
 - ADAPTER_REST_TLS_SYSTEMCERTPOOL=true
 - ADAPTER_REST_TLS_SERVE_CERT=/etc/tls/ec-pubCert.pem
 - ADAPTER_REST_TLS_SERVE_KEY=/etc/tls/ec-key.pem
 - ADAPTER_REST_DSN=mysql://rpadapter:rpadapter-secret-pw@tcp(mysql:3306)/
 - ADAPTER_REST_OP_URL=http://PUT-SOMETHING-HERE.com
 - ADAPTER_REST_PRESENTATION_DEFINITIONS_FILE=/etc/testdata/presentationdefinitions.json
 - ADAPTER_REST_DIDCOMM_INBOUND_HOST=0.0.0.0:8071
 - ADAPTER_REST_DIDCOMM_INBOUND_HOST_EXTERNAL=http://rp.adapter.rest.example.com:8071
 - ADAPTER_REST_TRUSTBLOC_DOMAIN=${BLOC_DOMAIN}
 - ADAPTER_REST_HYDRA_URL=https://hydra.trustbloc.local:4445
 - ADAPTER_REST_UNIVERSAL_RESOLVER_URL=http://did.rest.example.com:8072/1.0/identifiers
 - ADAPTER_REST_DSN_TIMEOUT=45
 ports:
 - 8070:8070
 entrypoint: ""
 command: /bin/sh -c "adapter-rest start"
 volumes:
 - ../keys/tls:/etc/tls
 - ../testdata:/etc/testdata
 networks:
 - bdd_net
 depends_on:
 - hydra
 - mysql

See this example in full here [https://github.com/trustbloc/edge-adapter/blob/master/test/bdd/fixtures/adapter-rest/docker-compose.yml].

Deploying the RP Adapter

To learn about integrating your OIDC client to a TrustBloc RP Adapter,
read our integration guide [https://github.com/trustbloc/edge-adapter/blob/master/docs/rp/integration/relying_parties.md].

Issuer Adapter

This component is an intermediary to act on behalf of an Issuer to perform DIDComm related use cases.

Configuring the Issuer Adapter

The following is a snippet of a Docker Compose TM file showing how Edge Adapter [https://github.com/trustbloc/edge-adapter] can be configured for use as an issuer.

issuer.adapter.rest.example.com:
 container_name: issuer.adapter.rest.example.com
 image: ${ISSUER_ADAPTER_REST_IMAGE}:latest
 environment:
 - ADAPTER_REST_HOST_URL=0.0.0.0:9070
 - ADAPTER_REST_GOVERNANCE_VCS_URL=http://governance.vcs.example.com:8066
 - ADAPTER_REST_TLS_CACERTS=/etc/tls/ec-cacert.pem
 - ADAPTER_REST_TLS_SYSTEMCERTPOOL=true
 - ADAPTER_REST_TLS_SERVE_CERT=/etc/tls/ec-pubCert.pem
 - ADAPTER_REST_TLS_SERVE_KEY=/etc/tls/ec-key.pem
 - ADAPTER_REST_DIDCOMM_INBOUND_HOST=0.0.0.0:9071
 - ADAPTER_REST_DIDCOMM_INBOUND_HOST_EXTERNAL=http://issuer.adapter.rest.example.com:9071
 - ADAPTER_REST_TRUSTBLOC_DOMAIN=${BLOC_DOMAIN}
 - ADAPTER_REST_UNIVERSAL_RESOLVER_URL=http://did.rest.example.com:8072/1.0/identifiers
 - ADAPTER_REST_DSN=mysql://issueradapter:issueradapter-secret-pw@tcp(mysql:3306)/
 - ADAPTER_REST_DSN_TIMEOUT=45
 ports:
 - 9070:9070
 - 9071:9071
 entrypoint: ""
 command: /bin/sh -c "adapter-rest start"
 volumes:
 - ../keys/tls:/etc/tls
 networks:
 - bdd_net

See this example in full here [https://github.com/trustbloc/edge-adapter/blob/master/test/bdd/fixtures/adapter-rest/docker-compose.yml].

Deploying the Issuer Adapter

Integration guide [https://github.com/trustbloc/edge-adapter/tree/master/docs/issuer]

Adapter Components (CHAPI + DIDComm)

[image: _images/adapter_component_diagram.svg]

Flows

The Evidence and Driver’s License (DL) Flow

These components allow users to access services with a VC such as a Driver’s License.
They are:

	Issuer Adapter

	RP Adapter

Combined DL, Evidence & Credit Score Flow

Here is an overfiew of the Bank Account usecase [https://github.com/trustbloc/edge-sandbox/blob/master/docs/demo/new-bank-account-usecase.md].

This scenario shows how a person can open a bank account using both local and remote credentials.
A local credential is stored in a user’s wallet while the remote credential is stored with a third-party.

In order to create the bank account, a Drivers License (local credential), Drivers Licence Evidence (remote credential)
and Credit Score (remote credential) are required.

These are issued as VCs from a Drivers License Issuer [https://demo-issuer.sandbox.trustbloc.dev/drivinglicense] and
a Credit Score Issuer [https://demo-issuer.sandbox.trustbloc.dev/creditscore].

This uses the Adapter/DIDComm [https://github.com/trustbloc/edge-sandbox/blob/master/docs/demo/sandbox_adapter_playground.md] flow.

Watch the demos below.

Creating a New Bank Account

 Direct Wallet/CHAPI Interactions

Direct Wallet/CHAPI Interactions

VCS

	Integration guide [https://github.com/trustbloc/edge-service/tree/master/docs/vc-rest]

Wallet

	Integration guide [https://github.com/trustbloc/edge-agent/tree/master/docs]

 Blinded Routing

Blinded Routing

Introduction

The Issuers and RPs can use the TrustBloc Adapters [https://trustbloc.readthedocs.io/en/latest/adapters.html] to interact
with each other and with the Wallet using DIDComm [https://github.com/hyperledger/aries-rfcs/tree/master/concepts/0005-didcomm].
The RP Adapter gets data from Issuer Adapter by calling its DIDComm URL and vice versa. In some cases, the Issuer wants to hide
its identity from the RP and vice versa. The TrustBloc platforms provide Support for this through the Blinded Routing feature.

In Blinded Routing, the communication between TrustBloc Adapters (Issuer/RP) goes through the Router. The Wallet selects
a Router and facilitates the creation of DIDComm connection between the Adapter (Issuer/RP) and the Router. The Adapter
registers itself with the Router for that Adapter-Wallet combination. The DIDDocument of the Adapters would include Router’s
endpoint/keys, which would be shared with other parties to create DIDComm connection with each other.

Flow Diagram

[image: _images/blinded_routing_flow.svg]

Components and Configurations

	Wallet [https://github.com/trustbloc/edge-agent/blob/master/docs/components/web_wallet.md#web-wallet-didcomm-flow-with-blinded-routing]

	Router [https://github.com/trustbloc/hub-router]

	Issuer Adapter [https://github.com/trustbloc/edge-adapter/blob/master/docs/issuer/issuer_integration.md#11-create-profile-api---http-post-profile]

	RP Adapter [https://github.com/trustbloc/edge-adapter/blob/master/docs/rp/integration/relying_parties.md#register-your-oidc-client]

DIDComm Messages

Wallet to Adapter : DID Doc Request

The wallet requests the adapter to provide the a new DID Document, which would be sent to Router.

Request:

{
 "@id":"089a0775-7e5f-4b96-912f-25532ec6853d",
 "@type":"https://trustbloc.dev/blinded-routing/1.0/diddoc-req"
}

Response:

{
 "@id":"a8fb8f8f-4137-4e4e-9168-9b34f8d93fee",
 "@type":"https://trustbloc.dev/blinded-routing/1.0/diddoc-resp",
 "~thread":{
 "thid":"089a0775-7e5f-4b96-912f-25532ec6853d"
 },
 "data":{
 "errorMsg":"<inCaseOfFailure>",
 "didDoc":{
 <adapterDIDDoc>
 }
 }
}

Wallet to Router : Create Connection

The wallet requests the router to create a new connection with the adapter, by passing adapter’s DID Document. The
router creates a new connection and returns its DID Document to the wallet.

Request:

{
 "@id":"1de30277-6849-4797-a9c3-e5f6449c9a17",
 "@type":"https://trustbloc.dev/blinded-routing/1.0/create-conn-req",
 "data":{
 "didDoc":{
 <adapterDIDDoc>
 }
 }
}

Response:

{
 "@id":"39aefb3f-562b-410d-b992-ab88e829aae9",
 "@type":"https://trustbloc.dev/blinded-routing/1.0/create-conn-resp",
 "data":{
 "errorMsg":"<inCaseOfFailure>",
 "didDoc":{
 <routerDIDDoc>
 }
 }
}

Wallet to Adapter : Route Registration

The wallet sends the router’s DID Document along with Parent threadID. The threadID from
earlier DIDDoc req message from wallet to adapter will be used as parentThreadID. The Adapter creates the connection
with the router and registers with it.

Request:

{
 "@id":"2d8ae926-111d-4970-a8b6-376991750d0f",
 "@type":"https://trustbloc.dev/blinded-routing/1.0/register-route-req",
 "~thread":{
 "pthid":"089a0775-7e5f-4b96-912f-25532ec6853d"
 },
 "data":{
 "didDoc":{
 <routerDIDDoc>
 }
 }
}

Response:

{
 "@id":"c3e8dfc0-aa84-420d-87d4-2401e2c41b7b",
 "@type":"https://trustbloc.dev/blinded-routing/1.0/register-route-resp",
 "data":{
 "errorMsg":"<inCaseOfFailure>"
 }
}

 Message Routing and Storage

Message Routing and Storage

Summary

This proposal reuses, modifies, and adapts several proposals from the Hyperledger Aries/Indy, and the DIF communities to in order to enable:

	Advanced use cases for credentials exchange, such as when the Issuer requires the User’s prior consent for issuance

	Guaranteed message delivery - even if the Agent is temporarily unavailable

	User-specified routing of messages from mediators to their Agents

	Unified message routing protocols and APIs

	Safe storage of encrypted identities separated from the encryption keys

	Simpler model for synchronization of wallets

	Simplex and duplex messaging paradigms

Specifically, this proposal builds on the foundation laid down by these proposals:

	DIF Identity Hub [https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md]

	Aries RFC 0046: Mediators and Relays [https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0046-mediators-and-relays/README.md]

	Aries RFC 0019: Encryption Envelope [https://github.com/hyperledger/aries-rfcs/tree/master/features/0019-encryption-envelope]

	Aries RFC 0094: Cross Domain Messaging [https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0094-cross-domain-messaging/README.md]

	Aries RFC 0050: Wallets [https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0050-wallets/README.md]

Here is a generic, simplified view:

[image: ../_images/a2a-overview.png]

1 - Hub Storage

Corresponds to the DIF Identity Hub’s Collections [https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md#collections] interface and Replication Protocol [https://hackmd.io/OInEIRLxQY2s48tze0E7IQ].

The Permissions API is disregarded because objects stored here are accessible solely by the Agent.

This storage service is plugged into the Agent’s wallet as an implementation of the Storage Interface as shown here [https://github.com/hyperledger/indy-sdk/tree/master/docs/design/003-wallet-storage#wallet-components].

2 - Mediator

The mediator filters messages (authorization) and routes them to the Agent of the Identity Owner’s choosing based on user-specified rules stored in a user-specified Hub Storage location.

Mediators buffer undelivered messages sent to the Agents until confirmation of delivery.

Mediators can be extended in many different ways to support many interesting use cases. For example, an Issuer’s Agent can request collaboration from other mediators (with prior consent from their respective Agents) in order to fulfill a request.

3 - Relay Network

Messages between sovereign domains are transported via a network of relays.

Mediators may communicate through one or several relay networks as per their requirements.

For example, a mediator might leverage the public TOR relay network to protect the Agent’s privacy, or it might simply use the internet.

Trusted Contexts

The basic exchange implied in the diagram above solves many real-world use cases, but needs to be extended to support scenarios where the Issuer remains the Holder of the User Data - while keeping the User in the locus of control.

The User may introduce themselves directly to the other parties by sharing Peer DIDs [https://dhh1128.github.io/peer-did-method-spec], or they may discover these other peers through an app that displays the public, well-known, blockchain-anchored DIDs [https://w3c-ccg.github.io/did-spec/] of recognized institutions.

:::{figure} _static/ledger-anchored-trust.png
:::

Mobile agent displaying parties with well-known DIDs anchored to a blockchain, all of which possess Verifiable Credentials from a trusted Issuer (trusted issuer not shown).

Once introduced to these parties (individually), the User proceeds to create a Trusted Context between all parties by asking them each for a new DID identifier for use in this context, along with any Verifiable Credentials [https://w3c.github.io/vc-data-model/] required for membership.

Setup of the Trusted Context ends with the User providing the other parties a consent receipt.

[image: ../_images/trusted-context.png]

Relays based on Trusted Context

The previous diagram shows the logical construction of a trusted context. For greater clarity, there are Mediators and Relay Networks between the participants that route based on the trusted context. In particular, the User Data traverses the mediators and relay network:

[image: ../_images/trusted-context-with-relay.png]

Putting it all together

Trust contexts are realized by:

	Using DIDs as identifiers within the context

	Using Verifiable Credentials for user data representation
* Including the user’s consent receipt, which will follow well known standard schemas [https://kantarainitiative.org/file-downloads/consent-receipt-specification-v1-1-0/]

	A credential schema negotiated among the parties

	A relay network negotiated among the parties

	Mediators ensuring message delivery to the Agents

[image: ../_images/putting-together.png]
Another scenario has the Issuer mediator delegating to the User mediator, in a manner similar to UMA [https://kantarainitiative.org/confluence/display/uma/Home]:

[image: ../_images/putting-together-uma.png]

 Privacy-Enhanced OAuth 2.0

Privacy-Enhanced OAuth 2.0

Status: DRAFT

Table of Contents

	Contributors

	Introduction

	Purpose of this document

	Motivation

	Objectives

	Constraints

	System Overview

	References

	Normative References

	Informative References

Contributors

	George Aristy (SecureKey Techologies)

Introduction

Purpose of this document

This document describes a reference implementation of OAuth 2.0 with
unregistered clients communicating and authenticating securely over the
backchannel with decentralized identifiers and verifiable credentials.

Motivation

There is a desire to leverage existing OAuth 2.0 infrastructure to build a
privacy-enhanced data sharing solution.

Finalized in 2012, OAuth 2.0 ([1]), is an established authorization
framework well suited to give a piece of software access to protected
resources with the owner’s consent. It was not, however, designed with the
principles of Privacy by Design ([2]) in mind.

First published in 2009, the principles of privacy by design became widely
known after the GDPR adopted them ([3]) and began enforcement in
2018. We seek to address two key principles of privacy by design that OAuth
2.0 does not:

Protect the user’s privacy by keeping the solution User-Centric

	Use the authorization grant mechanism of OAuth 2.0 to keep the user in the
locus of control.

	Use decentralized identifiers (DIDs) ([4]) so the user (and the other
actors) can avoid undesired correlation.

Protect the user’s privacy with end-to-end security

	Use end-to-end authenticated encryption of the messages and data while in
transit.

Objectives

	Allow a client to request the user for access to resources hosted on a resource server.

	Conceal the client’s location from the resource server’s location (and vice versa).

	Allow the user to grant the client access to the resources.

	Allow the user to revoke access to the client.

	Allow the user to indicate the location of these resources to the client.

	Minimize exposure of the client’s identity from the resource server (and vice versa).

	Ensure confidentiality in communications through the frontchannel.

	Ensure confidentiality in communications through the backchannel.

Constraints

	Use OAuth 2.0 (authorization code grant type).

	No modification of OAuth components in client nor resource server domains.

	Use decentralized identifiers.

System Overview

:::{figure} _static/oauth_didcomm_highlevel.png
:figclass: align-right

System Overview

	Green arrows indicate frontchannel communication.

	Blue arrows indicate backchannel communication over a secure transport.

	Black arrows indicate backchannel communication in their normal (HTTP) form.
:::

The figure above shows the main components of the system. It depicts a normal
OAuth 2 setup with the client, resource owner, authorization server and
resource server roles but adds two new components:

Broker:

OAuth 2.0 requires clients to be registered at the authorization server
[5] before sending the authorization request. Our objectives preclude
this, therefore the user requires a “broker” component that will relay the
authorization request appropriately and to the right location.

Adapter:

The adapters pack and unpack normal authorization requests, token
exchange/refresh requests, and requests to the resources to and from HTTP
transport and secure, end-to-end encrypted channels between the user, client,
and server domains. They also isolate the OAuth 2 components in the client
and server domains from the complexity of the network.

Footnotes

References

Normative References

Informative References

[1]
(1,2)
D. Hardt (Microsoft), “IETF RFC6749 - The OAuth 2.0 Authorization Framework” [https://tools.ietf.org/html/rfc6749],
October 2012

[2]
Ann Cavoukian (Information & Privacy Commissioner of Ontario, Canada), “Privacy by Design - The 7 Foundational Principles” [https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf], Retrieved December 10 2019

[3]
European Data Protection Supervisor, [“Preliminary Opinion on privacy by design” <https://edps.europa.eu/sites/edp/files/publication/18-05-31_preliminary_opinion_on_privacy_by_design_en_0.pdf>”][“preliminary opinion on privacy by design” https://edps.europa.eu/sites/edp/files/publication/18-05-31_preliminary_opinion_on_privacy_by_design_en_0.pdf”], May 31 2018

[4]
Drummond Reed (Evernym), Manu Sporny (Digital Bazaar), Markus Sabadello (Danube Tech), Dave Longley (Digital Bazaar), Christopher Allen (Blockchain Commons), Ryan Grant, “Decentralized Identifiers (DIDs) v1.0” [https://w3c.github.io/did-core/], W3C Working Draft 10 December 2019

[5]
As per section 2.4 of [1] , unregistered clients are out of scope but not precluded by the OAuth2 specification. However, it is difficult to reconcile this in a meaningful way with the fact that authorization servers assign the client_id to clients (section 2.2) to ensure their uniqueness so as to avoid impersonation attacks (see section 4.13 of [^cite_o2-bcp]).

 How to Contribute!

How to Contribute!

Thank you for showing interest to contribute to TrustBloc. Visit Contribution Guideline [https://github.com/trustbloc/community/blob/master/CONTRIBUTING.md].

Setup

Fork on Github

Before you do anything else, login/signup on GitHub and fork TrustBlock Projects from the GitHub project [https://github.com/trustbloc].

Clone your fork locally

If you have git-scm installed, you now clone your git repo using the following command-line argument where <my-github-name> is your account name on GitHub:

For example you fork fabric-mod sub project:

git clone git@github.com:<my-github-name>/fabric-mod.git

Installing TrustBloc Projects

Follow our installation instructions defined on each sub projects.Please record any difficulties you have and share them with the TrustBloc community by creating an issue.

Issues

TODO

Tips

TODO: how to define issues

Setting up topic branches and generating pull requests

To create a topic branch, its easiest to use the convenient -b argument to git checkout:

git checkout -b fix-update-branch
Switched to a new branch 'fix-update-branch'

You should use a verbose enough name for your branch so it is clear what it is about. Now you can commit your changes and regularly merge in the upstream develop as described below.
When you are ready to generate a pull request, either for preliminary review, or for consideration of merging into the project you must first push your local topic branch back up to GitHub:

git push origin fix-update-branch

Now when you go to your fork on GitHub, you will see this branch listed under the “Source” tab where it says “Switch Branches”.
Go ahead and select your topic branch from this list, and then click the “Pull request” button.

Here you can add a comment about your branch. If this in response to a submitted issue, it is good to put a link to that issue in this initial comment.
The repo managers will be notified of your pull request and it will be reviewed (see below for best practices). Note that you can continue to add commits to your topic branch (and push them up to GitHub) either if you see something that needs changing, or in response to a reviewer’s comments. If a reviewer asks for changes, you do not need to close the pull and reissue it after making changes. Just make the changes locally, push them to GitHub, then add a comment to the discussion section of the pull request.

How to get your pull request accepted

	If you add code/views you need to add tests!
TODO

	Don’t mix code changes with whitespace cleanup
TODO

	Keep your pull requests limited to a single issue
TODO

How pull requests are checked, tested, and done

TODO

Contributing Organizations

	SecureKey Technologies [https://docs.google.com/document/d/1ENMO-S7i0ef09IRx5teE-eJbRMFsaKSXEdatcufvjPM/edit].

 Have Questions?

Have Questions?

We try to maintain a comprehensive set of documentation for various audiences. However, we realize that often there are questions that remain unanswered. For any technical questions relating to a TrustBloc project not answered here, please use

Gitter [https://gitter.im/trustbloc/community?source=orgpage] (an alternative to Slack) on the #trustbloc-questions channel.

:::{note}
Please, when asking about problems you are facing tell us
about the environment in which you are experiencing those
problems including the OS, which version of Docker you are
using, etc.
:::

 Index

Index

_static/orb/sidetree-interactions.png
Sidetree Life Cycle Management REST API

Resolve

Create, Update, Delete, Recover

Write Published Op
Delete Unpublished Op

inpublished
Operations

e Write Unpublished Op

Operation Validator

Add Operation to Batch

Observer
Operations Batch Writer

Storage
Listen for Witnessed Anchor Indexes Read anchor index and Sidetree Create Anchor IndEand Post Offer e S s

\

%‘: o

‘Activity Pub

Content Addressable

Storage (CAS)

_images/TrustBloc-Final.png

_images/a2a-overview.png
Reley Network L] e |

Mobile Agent Enterprise Agent

=P .

Hub Storage Hub Storage

_static/sandbox-deployment/docker-compose-didcomm.yml.png
I router.agent.example.com I rp.adapter.rest.example.com

v

I issuer.adapter.rest.example.com

I rp-adapter-hydra.trustbloc.local

_static/sandbox-deployment/docker-compose-edge-components.yml.png
8070

8069

Tissustves.example.com

Trp-ves.example.com

8067 8066
8081 I holder.vcs.example.com I governance.vcs.example.com 8080 8091 8060
edv.example.com z resolver.example.com | | user.agent.example.com | | trustbloc.did.method.example.com

net: demo-net

nav.xhtml

 Table of Contents

 		
 TrustBloc : Interoperable Development Framework

 		
 Introduction

 		
 What is TrustBloc?

 		
 Why use TrustBloc?

 		
 Architecture

 		
 Orb

 		
 Introduction

 		
 Services

 		
 Components

 		
 Getting Started Tutorial

 		
 Setup

 		
 Orb with no VCT

 		
 Orb with VCT

 		
 Client Libraries and Utilities

 		
 Command-Line Interface (CLI)

 		
 Universal Resolver Driver

 		
 Verifiable Data Registry (VDR)

 		
 System Services

 		
 ActivityPub

 		
 Authorization

 		
 Batch Writer

 		
 Observer

 		
 Sidetree

 		
 Content Addressable Storage (CAS)

 		
 AMQP Publisher/Subscriber

 		
 Task Manager

 		
 Onboarding and Recovery

 		
 Databases

 		
 Witness Policy

 		
 Key Management

 		
 Metrics

 		
 Verifiable Credential Transparency (VCT)

 		
 Introduction

 		
 Log configuration

 		
 Log Monitoring

 		
 REST Endpoints

 		
 Startup Parameters

 		
 Rotate VCT logs

 		
 REST Endpoints

 		
 ActivityPub Endpoints

 		
 Sidetree Endpoints

 		
 DID Web File Endpoint

 		
 .well-known Endpoints

 		
 CAS Endpoint

 		
 Witness Policy Endpoint

 		
 VC Endpoints

 		
 Log Endpoint

 		
 System Endpoints

 		
 Startup Parameters

 		
 Required Parameters

 		
 Optional Parameters

 		
 Data Model

 		
 Anchor Linkset

 		
 Projects

 		
 Edge

 		
 Agent SDK

 		
 Bloc Hub

 		
 Sidetree

 		
 Upstream Project

 		
 Verifiable Credential Service (VCS)

 		
 What is a Verifiable Credential (VC)?

 		
 Edge-Service

 		
 Configuring the service

 		
 Deploying the service

 		
 VCS Components (CHAPI + VC Services)

 		
 Issuing a VC

 		
 Validating a VC

 		
 Connecting to the TestNet

 		
 Service Endpoints

 		
 Using Edge-Service

 		
 Register A Wallet

 		
 Issue a Credit Score Report

 		
 Issue a Driver’s License

 		
 References

 		
 Key Management System (KMS)

 		
 Introduction

 		
 What is KMS?

 		
 Startup Parameters

 		
 REST Endpoints

 		
 Server

 		
 KMS

 		
 Crypto

 		
 Keys

 		
 Types of the keys in KMS

 		
 Where keys are stored

 		
 Use cases

 		
 What is the impact of losing/compromising the key

 		
 Key Rotation

 		
 User operational keys

 		
 User key store primary key

 		
 Server key store primary key

 		
 Auth

 		
 Ory Hydra

 		
 Login and consent app

 		
 CLI

 		
 Create Keystore

 		
 Create Key

 		
 Metrics

 		
 Crypto

 		
 Database

 		
 Key store.

 		
 Caching

 		
 Server’s DB cache

 		
 Key store cache

 		
 Secret lock keys cache

 		
 Shamir secret cache

 		
 User Onboarding and Recovery

 		
 Authorization KMS

 		
 Operational KMS

 		
 Oathkeeper

 		
 Recovery

 		
 Adapters

 		
 What is an Adapter?

 		
 RP Adapter

 		
 Configuring the RP Adapter

 		
 Deploying the RP Adapter

 		
 Issuer Adapter

 		
 Configuring the Issuer Adapter

 		
 Deploying the Issuer Adapter

 		
 Adapter Components (CHAPI + DIDComm)

 		
 Flows

 		
 The Evidence and Driver’s License (DL) Flow

 		
 Combined DL, Evidence & Credit Score Flow

 		
 Direct Wallet/CHAPI Interactions

 		
 VCS

 		
 Wallet

 		
 Blinded Routing

 		
 Introduction

 		
 Flow Diagram

 		
 Components and Configurations

 		
 DIDComm Messages

 		
 Wallet to Adapter : DID Doc Request

 		
 Wallet to Router : Create Connection

 		
 Wallet to Adapter : Route Registration

 		
 Message Routing and Storage

 		
 Summary

 		
 1 - Hub Storage

 		
 2 - Mediator

 		
 3 - Relay Network

 		
 Trusted Contexts

 		
 Relays based on Trusted Context

 		
 Putting it all together

 		
 Privacy-Enhanced OAuth 2.0

 		
 Contributors

 		
 Introduction

 		
 Purpose of this document

 		
 Motivation

 		
 Objectives

 		
 Constraints

 		
 System Overview

 		
 References

 		
 Normative References

 		
 Informative References

 		
 How to Contribute!

 		
 Setup

 		
 Fork on Github

 		
 Clone your fork locally

 		
 Installing TrustBloc Projects

 		
 Issues

 		
 Tips

 		
 Setting up topic branches and generating pull requests

 		
 How to get your pull request accepted

 		
 How pull requests are checked, tested, and done

 		
 Contributing Organizations

 		
 Have Questions?

_images/bbdecfef0a769e8dcb1a2d4a30a2be3776a1a28a.png
AUTH

External service

» ORY Oathkeeper

Ory Hydra

L Login and consent app

_images/docker-compose-edge-components.yml.png
8070

8069

Tissustves.example.com

Trp-ves.example.com

8067 8066
8081 I holder.vcs.example.com I governance.vcs.example.com 8080 8091 8060
edv.example.com z resolver.example.com | | user.agent.example.com | | trustbloc.did.method.example.com

net: demo-net

_images/docker-compose-sidetree-fabric.yml.png
)\7051 48326

48326

8051 48526
7051 48326

8326

\7051

48826

8326 7051 /48326

\7051

I peerl.orgl.example.com

I peer0.orgl.example.com

zpeero.orgz.example.com

I peerl.org2.example.com

peerl.org3.example.com

I peer0.org3.example.com

rderer. example.com

_images/docker-compose-universal-resolver.yml.png
8083

8080

8085

8080

8084

fOSl

8098
8080

8082
8080

I driver-did-sov

I uni-resolver-did-v1-driver

Iuni—resolver—driver—did—uport

driver-did-key

uni-resolver-web

net: demo-net

_images/docker-compose-sidetree-mock.yml.png
8089 8088 48326
A\
I static-file-server I stakeholder.one I sidetree

_images/docker-compose-universal-registrar.yml.png
9080 9083

19080

Iuni—registrar—web I driver-did-v1

_images/onboard_user_flow.png
Auth Server

Operational
KMS

Authorization
KMS

Wallet

A A A A
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 et e e e R R LR R R R R R R LR EEEEEE R '
1 1 1 ll
: : : ‘
: : : ‘
1 1 1 ll
: : : ‘
1 1 1 ll
1 1 1 ll
1 1 1 e P e J S [
" " " A _ A A A “
1 1 1 ! ! ' ' ll
1 1 1 ! ! ' ' ll
1 1 1 ! ! ' ' ll
! : : ! " : “ "
1 o 1 o [] ' 1] 1
D ® I] I 1 ! ! ! !
' < ' < ' ' . “ “ 1
]] ! : = = "
T @ ' @ ' ' ! i~ ! i~ ! '
= =
-1 B 1 _ : 2 gl “
' ' ' 1 o o '
(2] (2]
=S | “ " A A :
) IR - I : : “ “ _
1 1 1 ll
o 1 2 2 o “ " “ “ g
&l : : S ! ! ! “ ol
[" " " X ' ' ' N w “
5 ' ' ' o ! . /ﬁ\ \7 = 1
..... e S e = HREREREEEEEEEE A SRR EEEEEEEEE SUINIA AUEEE SEEE | R EEEEES
o [1 [1
g| : : > “ 5 : “ : sl
' [}
gl ! H ' L | ' 8 ! ' ! o '
1 1 ' Q ! f f f Qo '
' ' ' % “ 1 > H 1 1 '
| | | ol . B " “ “ |
: : : £ ' 2 ' » ' ' ' ‘
' ' ' r0| ' [a] “ — ! “ “ '
' ' ' 5 “ L f [" 1 1 '
1 1 1 n [
" " " 5 !) y 3 " " " _
ll
' ' ' L ' ko] “ o ' “ “ '
' ' ' = ' Q ' © : ' ' '
' ' ' = ' 5 ' [' ' !
' ' ' m ! m ' 5 : ' ' '
1 1 1 ll
" " " > “ ° : !) : g : !
\ /. /. o h o ' 1 X ' X ! '
||||||||| .__|||| vV _1---- v [----w ||||||“||||| R = e il Hl il il R Il Tt N 1 Kt el el i et
' A . A H [0) ' A L . ' A © . A © . H
ll ll ll
v Qo ! ! o | ' Y ' , ' 34 ' 1 o ' '
= 1 1 ' ' Q ! ' ' '
] ' ' o ' ' X . ! ' © . ' © . '
P o g o - B ! A . : ! “ “ :
> = e [1 [o [!
1) [» 1 “ m 1 % ' H o 1 ' - 1 1 [
2 CE g EEES T 5 “ “
£ = ' [} ' ' Q3 ! ' X =1 ! ' '
' Nﬂ 1 [) 1 . (] 1 - ll N X < 1 ll o 1 ll '
[' = ' ! > ' © ' H PR ' ' O > ' ' '
] . S : 0 v2 ' ' Q i : ' < = : ' ‘
] 1 8 1 [T O H ! o :c 1 . S c 1 H 1
'8 o ‘ o ' ' ' > 2 ' A I ' ‘
ll . ll ll
o L3 “ L3 “ _ " a i “ _ > “ ! “
2 ' o ' ' o ' . ! w ' H o ' H '
' % ' o ' ! &) ' ' . o ' ' w ' ' '
L5 ‘ ‘ i ‘ ' ' ® i ' o ; : ;
\!z \'z \'z Wi \'z \i/ \af. m" \'z \I/ © \'z \I/ \'z
||||| _ \4 v v \4 v \4 \4 o \4 v by v v \4 -
S
(8]

onboardUser

_images/putting-together-uma.png
SovereignDomain

Hub Storage

delegated
consent check

.

SovereignDomain

Relay Network

Mediator

Hub Storage

o}

.
Relying Party

SovereignDomain

_images/platform_components.png
Consortum
‘Services.

Hypertedger
Fabric SOK

Consortum
‘Services

Consortuum-
Ghaincode.
el -
Operations (GRRC ARY
Vefable
Credentials

DID
Documents

_—

Traceable
Documents

Aries.

Core Fabric
(204)

Core Fabric
code changes

Open Hyperlediger

Cnaincode Modules.

"Module Framework (enable
‘customized peer bulds)

Hyperledger Fabric

Openadd-ons

Consortium
‘components

Consortium Logic

_images/putting-together.png
SovereignDomain

i
|
Hub Storage i Hub Storage
i
v i
i
i
™! =
Relay Network - Mediator
! n
! Relying Party
i

SovereignDomain SovereignDomain

_images/sidetree-interactions.png
Sidetree Life Cycle Management REST API

Resolve

Create, Update, Delete, Recover

Write Published Op
Delete Unpublished Op

inpublished
Operations

e Write Unpublished Op

Operation Validator

Add Operation to Batch

Observer
Operations Batch Writer

Storage
Listen for Witnessed Anchor Indexes Read anchor index and Sidetree Create Anchor IndEand Post Offer e S s

\

%‘: o

‘Activity Pub

Content Addressable

Storage (CAS)

_images/trusted-context-with-relay.png
W)

@l

ca

g
S

.
Isster

i

User
Trusted Sormert
Context

Relay Network Mediator

User Data.

—

.
Relying Party

_images/trusted-context.png
User

Trusted

Context
=

>

T it
Isster Relying Party
User Data.

_static/TrustBloc-Final.png

_static/file.png

_static/platform_components.png
Consortum
‘Services.

Hypertedger
Fabric SOK

Consortum
‘Services

Consortuum-
Ghaincode.
el -
Operations (GRRC ARY
Vefable
Credentials

DID
Documents

_—

Traceable
Documents

Aries.

Core Fabric
(204)

Core Fabric
code changes

Open Hyperlediger

Cnaincode Modules.

"Module Framework (enable
‘customized peer bulds)

Hyperledger Fabric

Openadd-ons

Consortium
‘components

Consortium Logic

_static/plus.png

_static/oauth_didcomm_highlevel.png
Browser

hitps: /v client.com

i)
: :
: :
Resource Owner ! !
:
e — '
IS :
| :
: :
A
P :
R e :
! v et 1
! e |
NE L '
5 . :
¢ :
et : !
4y g '
e ' '
i : s |
: : :
T 777 T CientDoman ~ ~ T 77 = '
:

Resource Seiver Domain

_static/onboard_user_flow.png
Auth Server

Operational
KMS

Authorization
KMS

Wallet

A A A A
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 1 ll
1 1 et e e e R R LR R R R R R R LR EEEEEE R '
1 1 1 ll
: : : ‘
: : : ‘
1 1 1 ll
: : : ‘
1 1 1 ll
1 1 1 ll
1 1 1 e P e J S [
" " " A _ A A A “
1 1 1 ! ! ' ' ll
1 1 1 ! ! ' ' ll
1 1 1 ! ! ' ' ll
! : : ! " : “ "
1 o 1 o [] ' 1] 1
D ® I] I 1 ! ! ! !
' < ' < ' ' . “ “ 1
]] ! : = = "
T @ ' @ ' ' ! i~ ! i~ ! '
= =
-1 B 1 _ : 2 gl “
' ' ' 1 o o '
(2] (2]
=S | “ " A A :
) IR - I : : “ “ _
1 1 1 ll
o 1 2 2 o “ " “ “ g
&l : : S ! ! ! “ ol
[" " " X ' ' ' N w “
5 ' ' ' o ! . /ﬁ\ \7 = 1
..... e S e = HREREREEEEEEEE A SRR EEEEEEEEE SUINIA AUEEE SEEE | R EEEEES
o [1 [1
g| : : > “ 5 : “ : sl
' [}
gl ! H ' L | ' 8 ! ' ! o '
1 1 ' Q ! f f f Qo '
' ' ' % “ 1 > H 1 1 '
| | | ol . B " “ “ |
: : : £ ' 2 ' » ' ' ' ‘
' ' ' r0| ' [a] “ — ! “ “ '
' ' ' 5 “ L f [" 1 1 '
1 1 1 n [
" " " 5 !) y 3 " " " _
ll
' ' ' L ' ko] “ o ' “ “ '
' ' ' = ' Q ' © : ' ' '
' ' ' = ' 5 ' [' ' !
' ' ' m ! m ' 5 : ' ' '
1 1 1 ll
" " " > “ ° : !) : g : !
\ /. /. o h o ' 1 X ' X ! '
||||||||| .__|||| vV _1---- v [----w ||||||“||||| R = e il Hl il il R Il Tt N 1 Kt el el i et
' A . A H [0) ' A L . ' A © . A © . H
ll ll ll
v Qo ! ! o | ' Y ' , ' 34 ' 1 o ' '
= 1 1 ' ' Q ! ' ' '
] ' ' o ' ' X . ! ' © . ' © . '
P o g o - B ! A . : ! “ “ :
> = e [1 [o [!
1) [» 1 “ m 1 % ' H o 1 ' - 1 1 [
2 CE g EEES T 5 “ “
£ = ' [} ' ' Q3 ! ' X =1 ! ' '
' Nﬂ 1 [) 1 . (] 1 - ll N X < 1 ll o 1 ll '
[' = ' ! > ' © ' H PR ' ' O > ' ' '
] . S : 0 v2 ' ' Q i : ' < = : ' ‘
] 1 8 1 [T O H ! o :c 1 . S c 1 H 1
'8 o ‘ o ' ' ' > 2 ' A I ' ‘
ll . ll ll
o L3 “ L3 “ _ " a i “ _ > “ ! “
2 ' o ' ' o ' . ! w ' H o ' H '
' % ' o ' ! &) ' ' . o ' ' w ' ' '
L5 ‘ ‘ i ‘ ' ' ® i ' o ; : ;
\!z \'z \'z Wi \'z \i/ \af. m" \'z \I/ © \'z \I/ \'z
||||| _ \4 v v \4 v \4 \4 o \4 v by v v \4 -
S
(8]

onboardUser

_static/agents/a2a-overview.png
Reley Network L] e |

Mobile Agent Enterprise Agent

=P .

Hub Storage Hub Storage

_static/agents/ledger-anchored-trust.png
casRUs

Verfiable
fedental

.
Faber Col

.
Acme Cop

Credental

Verfiable
Credental

DIDs

blockehain

Cars RUs
CarDealership

Faber College
Education

Acme Corp
Employer

_static/agents/putting-together-uma.png
SovereignDomain

Hub Storage

delegated
consent check

.

SovereignDomain

Relay Network

Mediator

Hub Storage

o}

.
Relying Party

SovereignDomain

_static/sandbox-deployment/docker-compose-sidetree-mock.yml.png
8089 8088 48326
A\
I static-file-server I stakeholder.one I sidetree

_static/sandbox-deployment/docker-compose-sidetree-fabric.yml.png
)\7051 48326

48326

8051 48526
7051 48326

8326

\7051

48826

8326 7051 /48326

\7051

I peerl.orgl.example.com

I peer0.orgl.example.com

zpeero.orgz.example.com

I peerl.org2.example.com

peerl.org3.example.com

I peer0.org3.example.com

rderer. example.com

_static/sandbox-deployment/docker-compose-universal-resolver.yml.png
8083

8080

8085

8080

8084

fOSl

8098
8080

8082
8080

I driver-did-sov

I uni-resolver-did-v1-driver

Iuni—resolver—driver—did—uport

driver-did-key

uni-resolver-web

net: demo-net

_static/sandbox-deployment/docker-compose-universal-registrar.yml.png
9080 9083

19080

Iuni—registrar—web I driver-did-v1

_static/minus.png

_static/agents/trusted-context.png
User

Trusted

Context
=

>

T it
Isster Relying Party
User Data.

_static/agents/putting-together.png
SovereignDomain

i
|
Hub Storage i Hub Storage
i
v i
i
i
™! =
Relay Network - Mediator
! n
! Relying P